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Abstract

Many materials exhibit a highly nonlinear elastic behavior, such as textiles or finger flesh. An efficient way of
enforcing the nonlinearity of these materials is through strain-limiting constraints, which is often the model of
choice in computer graphics. Strain-limiting allows to model highly non-linear stiff materials by eliminating de-
grees of freedom from the computations and by enforcing a set of constraints. However, many nonlinear elastic
materials, such as composites, wood or flesh, exhibit anisotropic behaviors, with different material responses de-
pending on the deformation direction. This anisotropic behavior has not been addressed in the past in the context
of strain limiting, and naïve approaches, such as applying a different constraint on each component of the prin-
cipal axes of deformation, produce unrealistic results. In this paper, we enable anisotropic behaviors when using
strain-limiting constraints to model nonlinear elastic materials. We compute the limits for each principal axis of
deformation through the rotation and hyperbolic projection of the deformation limits defined in the global refer-
ence frame. The limits are used to formulate the strain-limiting constraints, which are then seamlessly combined
with frictional contact constraints in a standard constrained dynamics solver.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based
modeling—

1. Introduction

Highly nonlinear elastic materials, such as flesh and fab-
rics, can be modeled very accurately using hyperelasticity.
However, hyperelastic models exhibit a very high numerical
stiffness, which requires very small simulation time steps.
An efficient alternative to hyperelasticity is the use of strain-
limiting constraints. In essence, strain-limitig eliminates de-
grees of freedom from the computations and, as a counter-
part, enforces a set of constraints. Therefore, strain-limiting
methods enable larger time steps, and turn the complexity
into the enforcement of constraints. They are often the model
of choice for highly nonlinear elasticity in computer graph-
ics [Pro95, BMF03, TPS09].

Many nonlinear stiff materials exhibit anisotropic be-
haviors. Wood, for instance, has different deformation and
strength properties along three clearly defined directions:
longitudinal (parallel to the grain), radial (across the growth
rings) and tangential (tangent to the growth rings). Muscles
are anisotropic, with different properties according to the
direction of the muscular fibers. When modeling heteroge-
neous objects through a single mesh, such as a human fin-

ger, the presence of flesh, skin and bones generates a highly
nonlinear and anisotropic behavior, with different amounts
of deformation depending on the position and direction of
the applied loads.

This anisotropic behavior has not been addressed in the
past in the context of constraint-based strain limiting. If set-
ting up common limits for all possible directions is a solved
problem, it is not clear how to set diverse limits for arbitrary
directions. There are simple and straightforward approaches
used in other contexts to model anisotropy, such as project-
ing the principal deformations onto orthogonal directions,
or computing linear interpolation of limits defined for fixed
orthogonal directions. However, these solutions produce un-
realistic results due to over- or under-constrained axes.

In this paper, we introduce a novel hyperbolic projec-
tion function to compute stretch and compress limits along
any deformation direction, and formulate the strain-limiting
constraints based on this interpolation. Since we enforce
the constraints following a constrained optimization for-
mulation, we show how to compute the jacobians of the
constraints w.r.t. the generalized coordinates of the system.
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Strain-limiting and frictional contact constraints are then
seamlessly combined in a standard constrained dynamics
solver. We compare our approach to naïve solutions and dif-
ferent approaches found in the literature, and show that our
approach produces predictable and more realistic results.

2. Related Work

Strain-limiting was initially applied to cloth simulation
based on the mass-spring model [Pro95, BMF03], and later
extended to finite element methods [TPS09], where strain is
measured and later limited by computing a correcting ve-
locity vector that enforces the strain limits on each com-
ponent. Wang et al. [WOR10] propose an approach inde-
pendent from the underlying parametrization by comput-
ing the principal strains of each mesh element, which are
later constrained to predefined limits in an isotropic fash-
ion. They also improve the convergence of relaxation com-
pared to [TPS09] by following a multi-resolution scheme.
Principal strains are also computed for the simulation of
invertible hyperelastic materials [ITF04], and gradients of
principal strains are needed for robust implicit integration
of such hyperelastic materials [SZL∗11]. Recently, Perez et
al. [PCH∗13] proposed to directly constrain the deforma-
tion tensor, and satisfy strain-limiting constraints using a
Lagrange-multiplier formulation. Such a formulation lever-
ages implicit integration, which makes the relaxation steps
global and improves convergence, and treats strain-limiting
constraints just like other constraints such as contact, allow-
ing them to be solved simultaneously using standard solvers.

The anisotropic behavior of real-world hyperelastic ma-
terials has been scarcely addressed in the past in the con-
text of strain limiting, yet many materials exhibit differ-
ent material responses depending on the deformation direc-
tion. Anisotropic behaviors are hard to implement in edge-
based strain-limiting approaches [Pro95, BMF03], since
edges need to be aligned with the deformation direction
that is being constrained, requiring extensive remeshing. In
continuum-based approaches, Thomaszewski et al. [TPS09]
use different limits for each strain value component of a
cloth simulation (weft, warp and shear strains). With this ap-
proach, limits and strain values are always defined on un-
deformed axes, hence they do not distinguish well the var-
ious deformation modes under large deformations. Picin-
bono et al. [PDA03] allow transverse anisotropic strain-
limiting (with a transverse and a radial privileged direction)
by adding an energy term to a hyperalasticity formulation,
penalizing stretch deformations in the transverse direction.
This formulation does not suffer from the same problems as
full anisotropy, since strain-limiting is only enforced on one
axis, the radial axis being free to deform. Therefore, no inter-
polation is required, but only a projection of the strain tensor
along the transverse direction.

Anisotropy behaviors can also be found in other dynamic
phenomena. For instance, in the context of anisotropic frac-

ture propagation, Allard et al. [AMC09] define two fracture
stress thresholds in reference orthogonal directions. In order
to define the threshold for other directions, they interpolate
between the reference thresholds based on the angle between
directions, and favor directions close to the reference by us-
ing a peak function with a controllable steepness.

In Wang et al. [WOR10], as well as our previous ap-
proach [PCH∗13], strain limiting is achieved by constrain-
ing principal strains with given maximal and minimal val-
ues. These two approaches are therefore isotropic. In order
to make them anisotropic, in this paper we design a novel
hyperbolic projection function for stretch and compress lim-
its for any deformation direction, and we take into account
the resulting constraint formulation in our implicit solver.

3. Formulation of Anisotropic Strain Limiting

In this section, we present our formulation of anisotropic
strain limiting using a hyperbolic projection method. We first
recall the formulation of strain-limiting, which limits the
principal axes of deformation inside each tetrahedron. We
then define the problem of computing strain limits along ar-
bitrary directions, and present our solution using hyperbolic
projection. We also formulate the strain-limiting constraints
using these anisotropic limits and describe the computation
of constraint Jacobians, necessary for the constrained opti-
mization solver.

3.1. Basic Formulation of Strain Limiting

As the underlying elasticity model, we use a linear co-
rotational strain formulation [MG04] with a linear Hookean
material model. We discretize the continuum elasticity equa-
tions using the finite element method (FEM) and a tetrahe-
dral mesh with linear basis functions. With these assump-
tions, the strain and stress tensors are constant inside each
tetrahedral element.

Given the four nodes {x1,x2,x3,x4} of a tetrahedral ele-
ment, we define its volume matrix

X =
(

x1−x4 x2−x4 x3−x4
)
. (1)

For convenience, we express the inverse of the rest-state vol-
ume matrix based on its rows:

X−1
0 =

 r1
r2
r3

 . (2)

It is also convenient to define a fictitious row r4 = −(r1 +
r2 + r3).

Using the volume matrix, the deformation gradient G =
∂x
∂x0

of a tetrahedron can be computed as

G = XX−1
0 . (3)
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Following Perez et al. [PCH∗13], we limit strain effec-
tively by limiting the deformation gradient of each tetrahe-
dron in the finite element mesh. To this end, we compute a
singular value decomposition (SVD) of the deformation gra-
dient of each tetrahedron:

G = USVT ⇒ S =

 s1 0 0
0 s2 0
0 0 s3

= UT GV, (4)

where the singular values {s1,s2,s3} capture deformations
along principal axes. U and V are rotation matrices, and S is
a scaling matrix. Unit singular values in all directions (i.e.,
si = 1) imply no deformation. We enforce strain limiting by
applying a lower limit smin (i.e., compression constraint) and
an upper limit smax (i.e., stretch constraint) on each singular
value of the deformation gradient:

smin ≤ si ≤ smax. (5)

3.2. Definition of Strain Limits

In the isotropic case, computing the limits for any principal
axis of deformation is straightforward, since the limits are
all the same no matter the direction. In the anisotropic case,
however, limits and deformation values are defined on dif-
ferent sets of axes. Stretch and compress limits are defined
on each axis of the global reference frame (s j

max and s j
min,

with j ∈ {1,2,3}). Deformation values are defined along the
principal axes of deformation computed through the SVD
(si, with i ∈ {1,2,3}). In general, the frames do not match.
Yet, we need to know the value of stretch and compress lim-
its along the principal axes of deformation to be able to for-
mulate the constraints as in Eq. (5). In the following, we de-
scribe our method for the computation of deformation limits
along the principal axes from deformation limits given on a
global frame.

Fig. 1 illustrates the problem and our solution. Let Fd be
the orthonormal frame representing the principal axes of de-
formation. According to the SVD decomposition in Eq. (4),
in order to transform a vector from the global frame (where
the limits are defined) to the frame Fd (where the deforma-
tion values are defined), the vector has to be rotated by ma-
trix VT . Since the limits are defined on the global frame,
which uses a canonical basis (e1 e2 e3), VT provides the
three directions along which the limits are known in Fd .
However, the deformation values to be limited are known
along the axes of Fd . Hence, our problem is reduced to find-
ing what the limits are along these axes.

For the general case, we require a function p that projects
each rotated limit onto the axes of Fd , thus providing stretch
and compress limits to apply to each deformation value si.
Since there are three directions (e1 e2 e3) with two limits
each (stretch and compress), and each direction has to be
projected on each axis of Fd , there is a total of 18 limits to
be computed (6 for each deformation value si).

Figure 1: Illustration of our hyperbolic projection method,
which projects the limits from the rotated global axes onto
the principal axes of deformation.

3.3. Hyperbolic Projection Function

Naïve approaches for p, such as orthogonal projection or lin-
ear interpolation, result in incorrect or unrealistic results, as
shown later in Section 5. Naturally, we want a non-linear
interpolation where the limit remains unchanged if deforma-
tion and limit directions match, and where the limit vanishes
(i.e. becomes infinitely large) when deformation and limit
directions are orthogonal. Therefore, we define p as:

p(θ) =
1

|cos(θ)| , (6)

where θ is the angle between a given rotated limit direction
and a given axis of Fd , as illustrated in Fig. 1.

Let us consider, for instance, axis e j of the global
frame, where s j

min and s j
max are defined. The limit

direction in Fd is VT e j, and the axes of Fd are
((1,0,0)T (0,1,0)T (0,0,1)T ) = (e1 e2 e3). This results in
the following stretch and compress values for each deforma-
tion value si:

s j,i
min = 1+

s j
min−1
|eT

i VT e j|
, (7)

s j,i
max = 1+

s j
max−1
|eT

i VT e j|
. (8)

Eqs. (7)-(8) provide stretch and compress values for each
limit defined on a global axis ( j ∈ {1,2,3}) and each princi-
pal axis of deformation (i ∈ {1,2,3}).
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3.4. Constraint Formulation

In the isotropic case, the constraints are defined as:

Ci
min = si− smin ≥ 0, (9)

Ci
max = smax− si ≥ 0. (10)

Based on Eqs. (7)-(8), we reformulate our constraints to take
into account each interpolated limit, resulting in:

C j,i
min = |e

T
i VT e j|(si−1)− (s j

min−1)≥ 0, (11)

C j,i
max = (s j

max−1)−|eT
i VT e j|(si−1)≥ 0. (12)

3.5. Constraint Jacobians

We enforce strain limiting constraints following a con-
strained optimization formulation [PCH∗13], summarized
later in Section 4. This formulation requires the computa-
tion of constraint Jacobians w.r.t. the generalized coordinates
of the system (i.e., the nodal positions of the finite element
mesh) due to two reasons. First, constraints are nonlinear,
and we locally linearize them in each simulation step. Sec-
ond, we enforce constraints using the method of Lagrange
multipliers, which applies forces in the direction normal to
the constraints.

Taking the derivatives of Eqs. (11)-(12) w.r.t. a node xn
requires computing the derivatives of si and VT w.r.t. xn. For
the differentiation of si, we show in [PCH∗13] that:

∂si

∂xn
= rn vi uT

i . (13)

Papadopoulo and Lourakis [PL00] define the derivative of
V w.r.t. each component gkl of the deformation gradient G
as:

∂V
∂gkl

=−VΩ
k,l
v , (14)

where Ω
k,l
v is found by solving a 2×2 linear system for each

gkl . Since we need the derivative of the transpose of V, and
knowing that Ω

k,l
v is antisymmetric, we have:

∂VT

∂gkl
= Ω

k,l
v VT . (15)

We can now use the chain rule to get the derivatives w.r.t.
tetrahedral nodes xn. To avoid dealing with rank-3 tensors,
we directly formulate the derivatives of VT e j instead:

∂VT e j

∂xn
= ∑

l

(
Ω

1,l
v VT e j Ω

2,l
v VT e j Ω

3,l
v VT e j

)
· rn,l .

(16)
Using Eq. (13) and Eq. (16), we can compute the derivatives
of the constraints in Eqs. (11)-(12) w.r.t. the nodal positions

of the mesh:

∂Ci, j
min

∂xn
= (si−1)sign(eT

i VT e j)eT
i

∂VT e j

∂xn
+ |eT

i VT e j|
∂si

∂xn
,

(17)

∂Ci, j
max

∂xn
= (1− si)sign(eT

i VT e j)eT
i

∂VT e j

∂xn
−|eT

i VT e j|
∂si

∂xn
.

(18)

4. Simulation Algorithm

In Perez et al. [PCH∗13], we describe our algorithm for sim-
ulating deformation dynamics with strain limiting. We for-
mulate the simulation as a constrained optimization prob-
lem, namely a linear complementarity problem, and we ap-
ply standard solvers.

Given the nodal positions and velocities at the beginning
of a simulation step, we perform an unconstrained dynam-
ics step by integrating the unconstrained dynamics equa-
tions with backward Euler implicit integration and linearized
forces. We then check whether strain-limiting constraints are
violated. We formulate the constraints using Eqs. (11)-(12),
and linearize them at the beginning of the simulation step
using the constrain jacobians in Eqs. (17)-(18).

The resulting linear complementarity problem (LCP)
is solved using projected Gauss-Seidel (PGS) relaxation
[CPS92]. Frictional contact is incorporated by comput-
ing non-penetration constraints with contact friction using
Coulomb’s model. Contact constraints are linearized and
seamlessly combined with strain-limiting constraints, and
the entire constraint set is solved simultaneously.

5. Results and Discussion

In this section, we present a set of simulation scenarios
to illustrate and qualitatively assess our anisotropic strain-
limiting approach. We also compare our work with sim-
ple but naïve ways of addressing anisotropic strain limiting,
such as orthogonal projection and linear interpolation of lim-
its.

Simulations were run on a 3.4 GHz Quad-core Intel Core
i7-3770 CPU with 32GB of memory.

5.1. Animation Tests

In order to qualitatively test the effect of anisotropic strain
limiting, we ran different simulations with a 1m× 0.2m×
0.2m beam, fixed at one of its ends, with 200 tetrahedra,
and a mass density of 1,000 Kg/m3. Fig. 2 (middle) shows
the results for a highly compliant beam (Young modulus of
E = 5kPa) with anisotropic strain limiting (unrestricted de-
formation in the horizontal axis and restricted to 4% stretch
and compress in the other two axes). For comparison, on
the right we show the same beam with isotropic 4% strain
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Figure 2: A deformed beam with three different materials. From left to right: stiff without restrictions (E = 200kPa), compliant
anisotropic (E = 5kPa, without restriction in the horizontal axis and 0.96 < si < 1.04 in the other two), and compliant isotropic
(E = 5kPa, 0.96 < si < 1.04 in all axes).

limiting, and on the left a stiffer unrestricted beam (E =
200kPa) with similar vertical deformation. Besides being
significantly more stretched than the others, the anisotropic
beam manages to preserve its wobbly elastic behavior along
its main axis due to its very low stiffness and its lack of re-
striction, as observed in the video accompanying this paper.

A real-world finger is a clear example of anisotropic non-
linear elastic behavior, particularly under compression. Due
to the presence of skin, flesh and bones, it is very compliant
under light loading, but soon becomes almost rigid. This is
true when the fingertip is pressed flat against a surface. When
pressed on the side, there is hardly any deformation, showing
a high anisotropy.

We simulate these highly nonlinear, highly anisotropic
conditions using a finger model of approximately 7cm with
347 tetrahedra, simulated with a mass density of 1,000
Kg/m3 (roughly the average mass density of human flesh),
and a Young modulus of E = 2MPa. The finger model is ini-
tialized with its longitudinal direction aligned with the hori-
zontal axis (e1), and the nail facing up along the vertical axis
(e2). Limits are defined as 0.95 < s1 < 1.05 (stiff along e1),
0.75 < s2 < 1.25 (compliant along e2) and 0.98 < s3 < 1.02
(almost incompressible along e3). The aforementioned simu-
lation parameters were selected by trial and error to approx-
imately match the behavior of a real finger. Fig. 3 shows
some results of the deformations when the finger is pressed
against a table along each axis. We compared our model with
an isotropic model using 0.75 < s1 < 1.25. As expected, for
the same motions we obtained similar results along (e2), and
overly compliant behavior along the other axes. The differ-
ences across the models are clearly visible in the accompa-
nying video.

Regarding performance, our approach is currently quite
expensive. However, we have not tried to optimize the con-
vergence of the solver. In the scenarios presented above, the
simulation runs in real-time for a low number of constraints

(∼< 5) and drops below interactive rates for highly con-
strained configurations. In the finger scenarios, the framer-
ate dropped below 1Hz during highly constrained motions
(more than 40 tetrahedra with constraints).

5.2. Comparison with Other Approaches

In order to justify the use of our hyperbolic projection func-
tion for the computation of limits along an arbitraty direc-
tion, in this section we show that straightforward approaches
do not yield correct results. We compare our hyperbolic pro-
jection method with the two simple but naïve approaches
among the projection and the interpolation categories: or-
thogonal projection and linear interpolation.

Orthogonal projection works by simply rotating the limits
defined in the global frame to frame Fd , and then project-
ing these limits onto the axes of Fd , where the deformation
values are defined. Therefore, there is a total of 18 limits
and constraints, as in our approach, with three stretch lim-
its s_orthopro j j,i

max and three compress limit s_orthopro j j,i
min

per principal axis of deformation:

s_orthopro j j,i
min = 1+(s j

min−1) |eT
i VT e j|, (19)

s_orthopro j j,i
max = 1+(s j

max−1) |eT
i VT e j|. (20)

Linear interpolation, on the other hand, interpolates the
values defined in the global frame to find the limits along
an arbitrary direction. Instead of rotating the global frame
to Fd , we proceed the other way around: we apply the in-
verse rotation to Fd to get the principal axes of deformation
in the global frame. This allows us to easily compute the in-
terpolations by simply computing the intersection of the line
defined by each principal axis of deformation with the ellip-
soid defined by the global frame and its limits. Therefore,
there is a total of 6 limits and constraints, as in the isotropic
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Figure 3: A finger is pressed against a table in three different configurations. Top: the finger has anisotropic limits simulating
the behavior of a real finger (compliant when pressed flat, stiff otherwise). Bottom: the finger with isotropic compliant limits.

case, with a stretch limit s_linearint i
max and a compress limit

s_linearint i
min per principal axis of deformation:

s_linearint i
min = ‖

 s1
min 0 0
0 s2

min 0
0 0 s3

min

Vei‖, (21)

s_linearint i
max = ‖

 s1
max 0 0
0 s2

max 0
0 0 s3

max

Vei‖. (22)

We highlight the limitations of both aforementioned ap-
proaches in the simple scenario of a compliant vertical beam
(E = 10kPa), fixed at its bottom, and compressing due to
gravity, shown in Fig. 4. Poisson’s ratio is set to ν = 0.3.
The vertical axis and one of the transverse axes are unre-
stricted. The remaining transverse axis can only deform up
to 5% (i.e., 0.95 < si < 1.05). Fig. 4 shows the state of the
beam when a constraint is violated for the first time for or-
thogonal projection (left), our approach (middle), and linear
interpolation (right).

In the case of orthogonal projection, constraints are al-
ready violated during the first frame of simulation, thus
clearly yielding an overly stiff material. The reason behind
this erroneous behavior is the absence of weights to re-
duce the influence of the limits defined on axes that are far
from the principal axes of deformation. In our scenario, the
SVD decomposition computed a vertical principal axis of
deformation matching the global vertical axis. Therefore, the
other two global axes, where stretch and compress limits are
defined, are orthogonal to the vertical principal axis of defor-
mation. Since the orthogonal projection between orthogonal
axes is zero, according to Eqs. (19)-(20) there are two stretch

and two compress limits on the vertical principal axis of de-
formation that are equal to 1, meaning that no deformation
is allowed along that axis. The beam is therefore frozen in
its initial configuration.

In the case of linear interpolation, constraints are violated
very late, when the beam has almost completely collapsed
on itself and artifacts start to appear, clearly beyond the ex-
pected 5% maximal transversal deformation. This is due to
the weighted combination of unrestrictive limits and very re-
strictive ones. Since values are interpolated, the very restric-
tive limit (in this case, the 5% limit) is progressively relaxed
to the unrestritive limit as the principal axis of deformation
moves from the restricted to the unrestricted axis. Since in
this vertical beam scenario the rotation V resulted in a 180-
degree rotation around the vertical axis, the transversal unre-
strictive limit overly relaxed the transversal restrictive limit,
thus resulting in an overly compliant material.

When using our approach, the state of the beam is coher-
ent with the 5% transversal deformation limit.

6. Conclusion

In this paper, we have presented a model for simulating
anisotropic behaviors in highly nonlinear elastic materials
using strain-limiting constraints. The core novelty of our
approach is the use of a hyperbolic projection method to
compute limits along any deformation direction given a set
of limits defined in the global axes. Using our model, we
are able to simulate the highly anisotropic and non-linear
elastic behavior of a finger, which is initially compliant
when pressed flat against a surface but extremely stiff when
pressed on the side. We compared our projection method
with simple solutions such as orthogonal projection or linear
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Figure 4: State of a deforming beam when the first con-
straint violation is detected, for different ways of comput-
ing the limits. The beam (E = 10kPa, ν = 0.3) is resting on
the floor and is compressing under gravity. The vertical axis
and one of the transverse axes are unrestricted. The remain-
ing transverse axis can deform up to 5% (0.95 < si < 1.05).
From left to right: orthogonal projection, hyperbolic projec-
tion (our approach), and linear interpolation.

interpolation, and showed that our approach produces pre-
dictable and more realistic results.

Nevertheless, our hyperbolic projection approach exhibits
some limitations, since it does not exactly preserve the lim-
its in the case of isotropic behavior. If the principal defor-
mation axes do not match the global axes, limits are scaled
as expected according to the angle between the axes. In an
isotropic scenario, however, limits should not be scaled since
they are the same for every direction. In the worst case sce-
nario (half-way between axes, i.e., an angle of 45 degrees),
the compress limit, for instance, is equal to 1+(smin−1)

√
2

instead of simply smin.

In addition, we observed some cases of locking when the
limits were too restrictive, resulting in an overconstrained
system. Future work will address these locking issues, as
well as investigate ways of limiting other deformation modes
such as shear. In addition, we would like to automatically
estimate and place anisotropic limits in a given model us-
ing real-world measurements [BBO∗09], thus avoiding ad-
hoc tuning and improving the quality of the deformations.
Finally, we would like to explore the use of more efficient
solvers, ideally reaching interactive rates for high-resolution
models.
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