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Displaying Sensed Tactile Cues
with a Fingertip Haptic Device

Claudio Pacchierotti, Domenico Prattichizzo, and Katherine J. Kuchenbecker

Abstract—Telerobotic systems enable humans to explore and manipulate remote environments for applications such as surgery and
disaster response, but few such systems provide the operator with cutaneous feedback. This article presents a novel approach to
remote cutaneous interaction; our method is compatible with any fingertip tactile sensor and any mechanical tactile display device, and
it does not require a position/force or skin deformation model. Instead, it directly maps the sensed stimuli to the best possible input
commands for the device’s motors using a data set recorded with the tactile sensor inside the device. As a proof of concept, we
considered a haptic system composed of a BioTac tactile sensor, in charge of measuring contact deformations, and a custom 3-DoF
cutaneous device with a flat contact platform, in charge of applying deformations to the user’s fingertip. To validate the proposed
approach and discover its inherent tradeoffs, we carried out two remote tactile interaction experiments. The first one evaluated the error
between the tactile sensations registered by the BioTac in a remote environment and the sensations created by the cutaneous device
for six representative tactile interactions and 27 variations of the display algorithm. The normalized average errors in the best condition
were 3.0% of the BioTac’s full 12-bit scale. The second experiment evaluated human subjects’ experiences for the same six remote
interactions and eight algorithm variations. The average subjective rating for the best algorithm variation was 8.2 out of 10, where 10 is
best.

✦

1 INTRODUCTION

Prior research has proven that haptic force feedback
enhances the performance of robotic teleoperation systems
in terms of task completion time [1], [2], [3], accuracy
[2], [4], peak exerted force [5], [6], and average exerted
force [3], [6], [7]. The human operator senses the feedback
provided by traditional grounded haptic devices through
two channels: cutaneous and kinesthetic [4], [8], [9], [10].
Cutaneous stimuli are detected by mechanoreceptors in the
skin, enabling humans to recognize the local properties of
objects such as shape, edges, and texture. Cutaneous percep-
tion for exploration and manipulation principally relies on
measures of the location, intensity, direction, and timing of
contact forces on the fingertips [9], [11]. On the other hand,
kinesthesia provides humans with information about the
position and velocity of neighboring body parts, as well as
the applied force and torque, mainly by means of receptors
in the muscles and joints [10], [12], [13].

Building on the success of kinesthetic force feedback,
haptics researchers have recently focused great attention
on cutaneous feedback. The richness of information that
cutaneous receptors can detect, together with their broad
distribution throughout the body, makes the skin an ex-
cellent communication channel [14]. Cutaneous feedback is
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known to play an important role in movement and weight
perception [12], [15], [16], precision grasping [17], and shape
recognition [18]. Cutaneous cues have even been found
to be more informative than kinesthetic cues in curvature
discrimination [19] and fine manipulation [20]. Moreover,
cutaneous feedback can provide an elegant way to simplify
the design of haptic interfaces: the low activation thresholds
and high fingertip densities of cutaneous receptors [12],
[14] enable researchers to design cutaneous display devices
that are small, lightweight, and inexpensive, e.g., [16], [21],
[22]. Cutaneous feedback has also recently been employed
in teleoperation to provide the operator with haptic cues
without causing instability [3], [4], [7].

An example of a cutaneous device exploiting these ca-
pabilities is the one presented by Minamizawa et al. [16],
developed to display the weight of virtual objects. It consists
of two motors that move a belt that is in contact with
the user’s fingertip. When the motors spin in opposite
directions, the belt presses into the user’s fingertip, while
when the motors spin in the same direction, the belt applies
a tangential force to the skin. This device was also used by
Prattichizzo et al. [23] to display remote tactile experiences.
Gleeson et al. [24] introduced a two-degree-of-freedom (2-
DoF) cutaneous device that laterally stretches the skin of
the fingertip using a 7 mm hemispherical tactor. Its two
RC servo motors and compliant flexure stage can move the
tactor along any path in the plane of the fingerpad. This
device has been used to guide a human user navigating an
unknown space [25].

Although these cutaneous devices have been success-
fully employed in various scenarios, their end-effectors al-
ways contact the fingerpad. They thus cannot provide the
sensation of breaking and making contact with virtual and
remote surfaces, cues that are known to be important to
tactile interaction [13], [26]. Provancher et al. [27] designed
the contact location display to overcome this limitation; it
includes a roller that translates along as well as makes and
breaks contact with the user’s fingertip. Kuchenbecker et
al. [21] employed a similar principle to create a non-actuated
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fingertip device that makes contact with the user’s skin
when force feedback is applied. Frisoli et al. [28] achieved
a similar effect by creating a finger-mounted thimble that
moves a 5-DoF flat contact plate around the fingertip.
The device can be also attached to the end-effector of a
grounded haptic interface to combine the characteristics of
an encounter-type haptic system with display of contact
surface orientation. More recently, Pacchierotti et al. [3]
presented a 3-DoF cutaneous device for remote tactile in-
teraction. Its design is similar to the ones described in [8],
[22], but it adds three springs to enable the platform to make
and break contact with the fingertip. A modified version of
this device will be also employed in this work.

Although these devices greatly improved the rendering
of remote and virtual environments by displaying cuta-
neous sensations, they have all been employed in scenarios
that treat the cutaneous interaction as a point force rather
than spatially distributed sensations. The device presented
by Kuchenbecker et al. [21], for example, is attached to a
single-point grounded haptic device; Prattichizzo et al. [23]
measured remote forces through only one force sensor; and
the authors of [3], [8], [22] evaluated the virtual environment
contact forces as though they were applied at one contact
point. On the one hand, this simplified approach makes
these haptic systems very easy to control, with only a few
input parameters and simple force sensing systems. On the
other hand, this approach cannot correctly represent the
wide range of sensations the fingertip may encounter during
a real interaction, since it does fully account for the spatial
distribution of cutaneous receptors [12], [13].

Finally, most of the aforementioned devices make use of
skin deformation models to determine the actuator inputs
needed to apply a given force. For example, Pacchierotti
et al. [3] used a simple isotropic elastic model of the fin-
gertip, assuming a linear relationship between platform
displacement and resultant wrench, while Gleeson et al. [24]
characterized the interaction between their device and the
skin through an experiment with seven human subjects.
Although they have served well, such models do not guar-
antee accurate delivery of the desired force on the user’s
fingertip.

Motivated by these past investigations, this article
presents a novel approach to remote tactile interaction.
Our approach directly maps the remote sensed stimuli to
input commands for the cutaneous device’s motors, without
using any kind of skin deformation model or force/position
estimation. Instead, it employs a k-nearest-neighbor-based
algorithm that uses a data set of tactile sensations recorded
with the tactile sensor inside the device. Our approach is
compatible with any fingertip sensing system and any me-
chanical tactile display device. Although nearest neighbor
algorithms are widespread in other areas of research [29],
[30], [31], to the best of our knowledge there is no prior
evidence of their use in tactile rendering. Similarly, placing
the tactile sensor inside the device to directly measure its
outputs is similar to using a camera to assess the fidelity of a
video display [32], [33], or using a microphone to assess the
fidelity of an auditory output [34], [35]. Again, this approach
is entirely new in touch display.

As a proof of concept, we considered a haptic system
composed of a BioTac tactile sensor (SynTouch LLC, Los
Angeles, USA), in charge of registering contact deformations

at the remote site, and a custom 3-DoF cutaneous device, in
charge of applying those deformations to the user’s fingertip
via a mobile platform. We validated the proposed approach
by carrying out one objective and one subjective experiment
with our proof-of-concept system. The key idea behind our
approach and an elementary evaluation of its performance
were presented in [36]. This article significantly extends our
prior work by recording a new data set that is approximately
4.6 times larger than the previous one, by retrieving multiple
neighbors of the point sensed by the BioTac to improve
the algorithm’s rendering accuracy, and by performing a
comprehensive objective evaluation and a completely new
subjective evaluation of the system’s performance.

The rest of this article is organized as follows. Sec. 2
describes the haptic system and the algorithm that maps de-
formations registered by the tactile sensor onto appropriate
input commands for the cutaneous device’s motors. Secs. 3
and 4 present and discuss the results of our two validation
experiments. Finally, Sec. 5 provides concluding remarks
and perspectives on the future of this line of research.

2 METHODS

We designed the proposed approach to work with any
fingertip haptic system that includes mechanical sensing
and mechanical actuation. As a proof of concept, we selected
a BioTac sensor and a custom 3-DoF cutaneous device.
This Section presents the haptic system and the proposed
mapping algorithm.

2.1 Sensing and actuation systems

The BioTac tactile sensor mimics the physical properties and
sensory capabilities of the human fingertip [37], [38]. As
shown in Fig. 1a, it consists of three complementary sen-
sory systems (deformation, internal fluid pressure, and tem-
perature) integrated into a single package. Contact forces
deform the elastic skin and the underlying conductive fluid,
changing the impedances of 19 electrodes distributed over
the surface of the rigid core. The DC pressure of the conduc-
tive fluid is measured by a hydro-acoustic pressure sensor,
which also detects the AC pressure changes caused by
transient contacts such as textures. The BioTac is internally
heated to near human body temperature, and both DC and
AC temperature are measured by a thermistor placed near
the surface of the rigid core.

The haptic interface employed in this work is a 3-DoF
fingertip cutaneous device that is similar to the one pre-
sented by Pacchierotti et al. [3]. As shown in Fig. 1b, it
is composed of a static platform that houses three servo
motors above the user’s fingernail and a mobile platform
that applies the requested stimuli to the fingertip. Three
cables connect the two platforms, and springs around the
cables keep the mobile platform in a reference configuration,
away from the fingertip, when not actuated. By controlling
the cable lengths, the motors can orient and translate the
mobile platform in three-dimensional space. The device
fastens to the finger with a fabric strap. The actuators used
in our prototype are Sub-Micro Servo 3.7g motors (Pololu
Corporation, Las Vegas, USA), which are able to exert up to
39 N·mm torque; they have a positioning resolution of 0.5◦,
are controlled at 50 Hz, and can move 60◦ in 0.07 s. The
motors were controlled through a PhidgetAdvancedServo



IEEE TRANSACTIONS ON HAPTICS, VOL. X, NO. X, MONTH YEAR 3

(a) The BioTac sensor
(picture courtesy of SynTouch LLC)

(b) The 3-DoF cutaneous device

Fig. 1. The haptic system considered in this work includes a BioTac tactile sensor, in charge of registering contact deformations at the remote
environment, and a custom 3-DoF cutaneous device, in charge of applying those deformations to the user’s fingertip through a mobile platform
controlled by three RC servos.

8-Motor board (Phidgets, Calgary, Canada). A short video
showing the device is available as supplemental material.

From the 19 electrode impedances distributed over the
BioTac’s surface and the DC pressure of the conductive
fluid, it is not trivial to control the orientation and position
of the mobile platform to recreate the contact deformations
applied to the sensor. Wettels et al. [39] first attempted
to estimate the tangential stress applied to a BioTac us-
ing a Kalman Filter on the impedances registered by the
electrodes. Later, Wettels et al. [37] used machine learning
techniques to estimate the radius of curvature, point of
application of force, and force vector from a BioTac during
sensor-object interaction, but such methods work well only
for interactions similar to those used during training. More
recently, Jimenez and Fishel [40] presented a prosthetic hand
equipped with a BioTac sensor. Contact force is fed back to
the user’s arm through a series of pneumatic air muscles
driven by the fluid pressure of the BioTac; notably, this
work did not make use of the electrode impedances, as the
mapping to shape display is not obvious.

2.2 Mapping between remote sensed data and motor
commands

Our goal is to enable the user to perceive, through the 3-DoF
fingertip cutaneous device, the deformations experienced
by the BioTac in the remote environment. In other words,
we aim to find an effective many–to–few mapping between
the rich sensory information provided by the BioTac and
the limited actuation capabilities of the fingertip cutaneous
device. Since our focus is in sensing deformations, we
consider the 19 electrode impedance readings and the DC
pressure signal. The BioTac senses these quantities at a rate
of 100 Hz with a precision of 12 bits. Let s(k) ∈ S =
{(s1(k), . . . , s20(k)) ∈ Z

20 : 0 ≤ si(k) ≤ 4095} be a
vector containing the values sensed at instant k. In contrast,
our cutaneous device uses three position-controlled motors.
Let m(k) ∈ M = {(m1(k),m2(k),m3(k)) ∈ R

3 : 30◦ ≤
mi(k) < 195◦} be a vector containing the commanded
angles for these motors at instant k. Note that we are
neglecting quantization in the motor position outputs for
simplicity. In order to simplify the notation further, the
sampling time index k will be omitted from now on.

How can we map a given BioTac sensation to a congru-
ent configuration of the mobile platform? Because the BioTac
mimics the physical properties of the human fingertip [37],
[38], we realized that we could place it inside the cutaneous

Fig. 2. Data collection. The BioTac was placed inside the cutaneous
device, and the platform was moved to a wide range of configurations.
The motor inputs m∗ and the resultant cutaneous sensations s∗ were
recorded.

device to discover how the motion of the mobile platform
affects the tactile sensor. To the best of our knowledge, no
other work in the literature takes a similar approach. As
shown in Fig. 2, the BioTac was placed between the foam
and the mobile platform, in the same way a human user
would wear the device. We then moved the mobile platform
to a wide range of configurations and registered the effect of
each of these configurations on the BioTac, saving both the
commanded motor angles m∗ and the resulting effect on the
tactile sensor s∗. Using a moderate step size of θ = 3◦ yields

( 195
◦
−30

◦

3◦
)3 = 166375 unique platform configurations. The

platform was held in each configuration for 0.1 s, and the
values gathered by the BioTac were arithmetically averaged.
Data collection took approximately 47 hours. At the end of
data collection, we were thus able to evaluate the mapping
function

µ : S∗ → M∗,

µ(s∗) = m∗,
(1)

which links the BioTac sensed data to the motor input
commands. Set M∗ ⊂ M contains all the angle triplets
actuated during data collection, and S∗ ⊂ S contains all
the resulting sensed values registered by the BioTac. In this
case the cardinality of sets S∗ and M∗ is 166375, which is
much lower than the 409620 different points the BioTac can
sense (i.e., |S| = 409620). Function µ(·) is thus defined for
a very small subset of all the possible tactile sensations the
BioTac can experience. For this reason, we cannot simply
deploy the sensor in a remote environment and expect its
sensed points to be in the domain of our mapping function
µ(·). Unfortunately, this problem cannot be fixed by simply
reducing the angle step size during data collection. The
shape of the platform and the limited degrees of freedom
of the cutaneous device will always couple the behavior of
neighboring electrodes, so not all points in S are reachable
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Fig. 3. Proposed algorithm. The BioTac registers a tactile sensation s at the remote environment. Function νn(·) looks for the n closest points s∗

contained in the set recorded during data collection. These points are then mapped by µn(·) to the corresponding motor angle triplets m∗. Finally,
ϕn(·) averages those points to find the angle triplet m that should be actuated by the device to allow the user to feel an approximation of what the
BioTac is feeling.

with the given device. Other low-DoF cutaneous devices
would be able to reach different subsets of S.

We thus need a function that maps a generic sensed point
s ∈ S to one in our mapping function’s domain S∗. An idea,
for example, is to look for the point in our domain closest to
the sensed one, thus defining

ν : S → S∗,

ν(s) = s∗,
(2)

as the function that maps a generic point s ∈ S, sensed
by the BioTac, to the closest one in S∗. In this work we
implemented the nearest point search using the Approxi-
mate Nearest Neighbour (ANN) C++ library by Mount and
Arya [41], [42], considering the 20-dimensional Euclidean
distance metric. The library stores set S∗ into a k-d tree data
structure, and then, given the query point s, it retrieves the
nearest point s∗ ∈ S∗. Although the library supports the
search for approximate nearest neighbors, we employed the
exact search. In order to evenly weight the twenty elements
of the sensed data when computing the distance, we di-
vided each component of s and s∗ by the corresponding
standard deviation observed during data collection, so that
the standard deviation of each component of the vectors in
S∗ becomes 1.

It is now trivial to combine functions µ(·) and ν(·) to
define

f : S → M∗,

f(s) = µ(ν(s)) = µ(s∗) = m∗,
(3)

as our final function, which maps a generic point s ∈ S,
sensed by the BioTac, to the motor angle triplet m∗ ∈ M∗

that most closely causes sensation s.
Although f(·) provides an effective way to map a

generic point sensed by the BioTac to a motor angle triplet,
its image set M∗ contains a very small subset of all the
possible angle configurations the motors can reach. Our

3◦ step size in data collection yielded only 195
◦
−30

◦

3◦
= 54

different angle configurations out of the 195
◦
−30

◦

0.5◦
= 330

configurations that each motor can reach. This problem
can be easily addressed by choosing a smaller step size.
However, considering that the present data collection took
47 hours, this approach may not always be feasible. A step
size of θ = 0.5◦ (the servo angle resolution) would yield

( 195
◦
−30

◦

0.5◦
)3 ≈ 3.6 · 107 unique platform configurations and

an estimated duration of more than one year for data collec-
tion, which is not justified. Moreover, having so many points
in S∗ would also impose severe computational constraints
on the algorithm speed.

An alternative way to address this problem is redefining
our search function ν(·) to provide more than one neighbor

of the point sensed by the BioTac. The resulting motor angle
triplets can then be combined using a weighted average. In
addition to enlarging the image set of our final function,
this approach also makes the system more robust to isolated
errors during data collection. Let us thus define

νn : S → S
n
∗
,

νn(s) =













s∗,1

s∗,2

...

s∗,n













= ⌢
s∗,

(4)

as our improved search function that maps a generic point
s ∈ S, sensed by the BioTac, to the n closest ones in S∗, and

µn : Sn
∗
→ M

n
∗
,

µn(
⌢
s∗) = µn
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(5)

as the function that maps those n points to their correspond-
ing motor angle triplets registered during data collection.

We now require an additional step to map ⌢
m∗ ∈ M

n
∗

to
a single angle triplet for the servo motors. Let us then define

ϕn : Mn
∗
→ M,

ϕn(
⌢
m∗) = ϕn

























m∗,1

m∗,2

...

m∗,n

























= m,
(6)

as the function that averages the n angle triplets in ⌢
m∗

to yield a single one defined in the set of all the angle
triplets reachable by our motors. This work used a simple
inverse-distance weighted mean. We thus computed each
component of m = (m1,m2,m3) as

mi =
n
∑

q=1

wq ·m∗,q,i

n
∑

p=1

wp

, i = 1, 2, 3, (7)
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where m∗,q,i is the i-th component of m∗,q , and wq =
(|s − s∗,q|)−2 is the reciprocal of the square of the distance
between the sensed point s and the q-th point closest to it in
S∗, as evaluated by νn(·).

Finally, we can combine µn(·), νn(·) and ϕn(·) to define

fn : S → M,

fn(s) = ϕn(µn(νn(s))) = ϕn(µn(
⌢
s∗)) =

= ϕn(
⌢
m∗) = m,

(8)

as our enhanced final function, which maps a generic point
s ∈ S, sensed by the BioTac, to a motor angle triplet m ∈ M.
It is worth noting that µ(·) and ν(·), defined respectively
in (1) and (2), are particular cases of µn(·) and νn(·) for
n = 1. Moreover, function ϕn(·) for n = 1 is the identity
function, so f(·) defined in (3) is also a particular case of
fn(·) for n = 1.

The algorithm is summarized in Fig. 3. Its performance
is expected to improve when one reduces the angle step
size in data collection, increases the degrees of freedom of
the device, and/or increases the number of neighbors re-
trieved by function νn(·). A short video featuring the BioTac
interacting with a remote environment and the cutaneous
device driven according to this algorithm is available as
supplemental material. The system shown in the video uses
only one neighbor, as in (3) and in the preliminary version
of the system presented in [36].

3 EXPERIMENTAL EVALUATION

We evaluated the proposed algorithm by carrying out two
remote tactile interaction experiments. The first experiment
aims to quantitatively evaluate the error between the tactile
sensations registered by the BioTac in the remote envi-
ronment and the ones actuated by the cutaneous device.
The second experiment aims to collect quantitative data
regarding the experience of human subjects using our tactile
system.

To enable us to compare their results, the two exper-
iments used the same set of remote tactile experiences.
We recorded video and tactile data during six different
interactions between a stationary BioTac sensor and a flat
metal surface that was moved by hand to touch the BioTac’s
fingertip in different ways. The experimental setup is shown
in Fig. 4, and a short video featuring all the interactions
is available as supplemental material. The first interaction,
called back-flat-back in Fig. 4a, consists of making contact
with the proximal part of the BioTac, then moving toward
the finger pulp and returning to the back part of the finger.
The second one, called tip-flat-tip in Fig. 4b, consists of
making contact with the distal part of the BioTac, then
moving toward the finger pulp and returning to the tip. The
third one, called left-flat-left in Fig. 4c, consists of making
contact on the left lateral side of the BioTac, then moving
toward the finger pulp and returning to the left side. The
fourth one, called right-flat-right in Fig. 4d, performs the
same sequence of interactions on the right lateral side of
the BioTac. The fifth one, called flat in Fig. 4e, consists of
making contact with the finger pulp with the surface parallel
to the sensor’s nail. The last one, called complex in Fig. 4f, is
a combination of the other five motions. Each interaction

(a) Back-flat-back interaction

(b) Tip-flat-tip interaction

(c) Left-flat-left interaction

(d) Right-flat-right interaction

(e) Flat interaction

(g) Complex interaction (a combination of the others)

Fig. 4. Recorded interactions. We recorded video and tactile data during
six different interactions between a BioTac sensor and a flat surface.

Fig. 5. Algorithm demonstration. Representative frames from the back-
flat-back and tip-flat-tip videos, together with the respective platform
configurations as chosen by the algorithm. The depicted cases used
a step size of 3◦ and n = 8 neighbors.
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was repeated three times within its recording. The whole
tactile experience (six interactions, each of them repeated
three times) lasts 3.4 minutes. Fig. 5 shows representative
frames of the videos for the back-flat-back and tip-flat-tip
interactions, together with the respective platform config-
urations chosen by the proposed algorithm. Note that the
cutaneous device’s platform mimics the relative orientation
of the surface although our approach does not explicitly
measure the surface’s angle.

This twofold evaluation of our algorithm was inspired
by similar approaches taken to evaluate the performance
of rendering algorithms for other sensory modalities. The
literature on compression algorithms for still pictures, for
example, takes an approach very similar to ours. On the
one hand, it objectively evaluates the quality of the com-
pressed images by measuring the peak signal-to-noise ratio
(PSNR) of the decoded image with respect to the original.
On the other hand, it carries out subjective experiments
where humans are asked to compare and rate the quality
of the compressed images with respect to the original [43],
[44], [45]. Similarly, researchers objectively evaluate the
performance of compression algorithms for audio signals
employing sophisticated ear models [46], [47], while the
subjective evaluation requires human listeners to compare
and rate the quality of the compressed audio signals with
respect to the original [47], [48].

3.1 Objective evaluation

In order to evaluate the error between the tactile sensations
registered in the remote environment and the ones actuated
by the cutaneous device, we placed a BioTac sensor inside
the cutaneous device, as done for data collection (see Fig. 2).
We then sent the tactile data recorded during the six in-
teractions of Fig. 4 through our algorithm and drove the
cutaneous device to the resulting motor angle triplets over
time, while recording what the BioTac sensed. A preliminary
version of this experiment with a single tactile interaction
was presented in [36].

We compared the results of nine different versions of the
algorithm’s parameters, varying the step size during data
collection (θ = 3◦, 6◦, 9◦) and the number of points retrieved
by the nearest neighbor function νn(·), n = 1, 4, 8 (see (4)).
Moreover, to show the generality of the algorithm, we also
considered three different ways of controlling the cutaneous
device: with one, two, or three degree of freedom. When
controlling it as a 1-DoF device, we always command the
three motors to the same target angle (i.e., m1 = m2 = m3).
While controlling it as a 2-DoF device, we give the two rear
motors (the ones closer to the fabric strap) the same angle,
and the front motor is driven independently. Reducing the
degrees of freedom of the cutaneous device, as well as
increasing the step size during data collection, reduces the
cardinality of our reachable space S∗. For example, a step
size of 6◦ with a 2-DoF controller leads to |S∗| = 784, while
a step size of 9◦ with a 1-DoF controller leads to |S∗| = 19. In
order to guarantee the same setup for all of the conditions,
we ran the data collection only once, considering a 3◦ step
size and a 3-DoF configuration for the device, and from that
we generated all of the required reachable spaces.

We tested all possible algorithm and device configura-
tions for each of the six remote interactions of Fig. 4, ending

1 2 3
0

1

2

3

4

5

6

7

Fig. 6. Selected results from objective evaluation. Normalized error
vs. degrees of freedom for each tactile interaction for a representative
version of the algorithm (n = 1, θ = 3◦). While separated in this plot,
the six tactile interactions were considered independent observations in
the data analysis.

up with 3 (step size values) × 3 (nearest neighbor values) ×
3 (DoF values) × 6 (interactions) = 162 different conditions.
The experiment lasted 96 minutes. As a measure of fidelity,
we calculated the error ef between the tactile sensations
registered by the BioTac in the remote environment s and
the ones registered by the BioTac inside the cutaneous
device sr . Then, we averaged the error across the 20 sensing
channels and over time for each condition,

ēf =
1

K

K
∑

k=1

(

20
∑

i=1

|si − sr,i|
20

)

(9)

where K is the total number of samples recorded. As de-
tailed in Sec. 2.2, the tactile sensations registered by the pres-
sure sensor and the electrodes are normalized at runtime
by dividing them by the corresponding standard deviation
observed during data collection, so this error metric is also
based on the normalized error.

Fig. 6 depicts the average normalized error versus de-
vice degrees of freedom for each type of interaction for a
representative version of the algorithm (n = 1, θ = 3◦).
One can see a general trend of lower errors with more
degrees of freedom. Furthermore, the simplest interaction
(flat) has approximately the same error for all versions
of the device controller, while the motions that touch the
sides of the BioTac have the highest errors and are most
sensitive to controller version. Each datapoint in this plot
represents just a single measurement, so we averaged the
errors across the six interactions to enable statistical anal-
ysis. Fig. 7 shows the results averaged across the six tactile
interactions. By examination of our recorded dataset and the
kinematics of the cutaneous feedback device, we calculated
that the lowest average error (ēf ≈ 2.0) corresponds to
a platform orientation error of approximately 2.75◦ away
from a nominal platform contact configuration, assuming
no translation error. It is also useful to consider the average
non-normalized error with respect to the full 12-bit scale the
BioTac can reach (0 – 4095). The average error in the best
condition (3-DoF, θ = 3◦, n = 1) was 3.0% of the full 12-bit
scale, and it was 31.6% of full scale in the worst condition
(1-DoF, θ = 9◦, n = 1).

To compare the different algorithm and device configu-
rations, we ran a three-way repeated-measures ANOVA on
the normalized error data shown in Fig. 7. Each tactile inter-
action was considered as an independent observation. Step
size during data collection, number of neighbors retrieved
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(a) degrees of freedom vs. error, n = 1
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(d) step size vs. error, 1-DoF configuration
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(b) degrees of freedom vs. error, n = 4
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(e) step size vs. error, 2-DoF configuration
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(c) degrees of freedom vs. error, n = 8
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(f) step size vs. error, 3-DoF configuration

Fig. 7. Results of objective evaluation averaged across tactile interactions. Average normalized error vs. degrees of freedom (a, b, c) and step size
(d, e, f) are reported (mean ± standard error of the mean). Statistical analysis revealed a significant increase in the rendering error when reducing
the degrees of freedom of the cutaneous device, when increasing the step size during data collection, and when reducing the number of neighbors
retrieved by function ν(·). The dashed circles in Fig. 7c indicate the groups tested for equivalence using the two one-sided t-test (TOST).

by function ν(·), and degrees of freedom of the device were
treated as within-subject factors.

All the data passed the Shapiro-Wilk normality test.
Mauchly’s Test of Sphericity indicated that the assumption
of sphericity had not been violated for the device degrees
of freedom, while it was violated for the data collection
step size (χ2(2) = 17.008, p < 0.001), number of neighbors
retrieved (χ2(2) = 21.705, p < 0.001), interaction between
degrees of freedom and step size (χ2(9) = 40.938, p <
0.001), interaction between degrees of freedom and number
of neighbors retrieved (χ2(9) = 38.852, p < 0.001), and
interaction between step size and number of neighbors
retrieved (χ2(9) = 44.385, p < 0.001). A Greenhouse-
Geisser correction was applied to the tests involving data
that violate the sphericity assumption.

The ANOVA test revealed a statistically significant
change in the error for degrees of freedom (F (2, 10) =
31.415, p < 0.001, partial η2 = 0.863), step size
(F (1.007, 5.036) = 43.791, p = 0.001, partial η2 = 0.898),
and number of neighbors retrieved (F (1.002, 5.011) =
35.943, p = 0.002, partial η2 = 0.878). Moreover, there
was a statistically significant interaction between degrees of
freedom and step size (F (1.146, 5.728) = 30.785, p = 0.001,

partial η2 = 0.860), degrees of freedom and number of
neighbors retrieved (F (1.235, 6.177) = 25.528, p = 0.002,
partial η2 = 0.836), and step size and number of neighbors
retrieved (F (1.016, 5.082) = 43.929, p = 0.001, partial
η2 = 0.898). Post hoc analysis with Bonferroni adjustments
revealed a significant increase in the rendering error when
reducing the degrees of freedom of the cutaneous device (1-
DoF vs. 2-DoF, p = 0.013; 1-DoF vs. 3-DoF, p = 0.002; 2-DoF
vs. 3-DoF, p = 0.036), when increasing the step size during
data collection (3◦ vs. 6◦, p = 0.005; 3◦ vs. 9◦, p = 0.003;
6◦ vs. 3◦, p = 0.002), and when reducing the number of
neighbors retrieved by function ν(·) (1 vs. 4, p = 0.006; 1
vs. 8, p = 0.005; 4 vs. 8, p = 0.013). Table 1 summarizes the
results of this statistical analysis.

As it is clear from Fig. 7 and from the statistical analysis
reported above, there is a significant interaction between
step size and number of neighbors retrieved by the algo-
rithm: increasing the number of neighbors retrieved reduces
the difference between conditions with dissimilar step sizes.
To determine whether this difference can be considered
statistically negligible, we used the two one-sided t-test
approach (TOST). The null hypothesis of the TOST states
that the mean values of two groups are different by at least
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Three-way repeated-measures ANOVA

Effect p value

degrees of freedom < 0.001

step size 0.001

number of neighbors 0.002

degrees of freedom × step size 0.001

degrees of freedom × number of neighbors 0.002

step size × number of neighbors 0.001

Post hoc analysis with Bonferroni

degrees of freedom p value

1-DoF vs. 2-DoF 0.013

1-DoF vs. 3-DoF 0.002

2-DoF vs. 3-DoF 0.036

step size p value

3◦ vs. 6◦ 0.005

3◦ vs. 9◦ 0.003

6◦ vs. 3◦ 0.002

number of neighbors p value

1 vs. 4 0.006

1 vs. 8 0.005

4 vs. 8 0.013

TABLE 1
Summary of the statistical analyses for the objective evaluation.

a certain amount ε. Then, in order to test for equivalence, the
90% confidence intervals for the difference between the two
groups are evaluated. The null hypothesis that the groups
differ by at least ε is rejected if the limits of the interval fall
outside the ±ε bounds. Conversely, comparability is demon-
strated when the bounds of the 90% confidence interval of
the mean difference fall entirely within the ±ε bounds [49],
[50]. The design of equivalence tests can be tricky because
the acceptance criterion ε must be defined on the basis of
prior knowledge of the measurement. For a sample data set
of p independent measurements with standard deviation
δ, for instance, ε must certainly be greater than δ/

√
p,

otherwise the test may fail simply because of imprecision,
rather than because of a true difference. However, it must
also be less than any specifications or standards that the
testing is challenging, or the test becomes too easy and will
not adequately discriminate.

In this work we evaluated ε as suggested in [50], where
the authors provided a useful step-by-step process for per-
forming equivalence testing with commonly available com-
putational software packages. The two one-sided tests were
performed between conditions retrieving n = 8 neighbors,
considering separately conditions with different degrees of
freedom. The three tested groups are circled in Fig. 7c. To
avoid raising the family-wise error rate, i.e., the probability
of at least one incorrectly rejected null hypothesis in a
family of tests, we took into account the simple correction
discussed in [51]. The tests revealed statistical equivalence
between all three step sizes (3◦, 6◦, and 9◦) when actuat-
ing one degree of freedom, and between 3◦ and 6◦ when
actuating two and three degrees of freedom.

3.2 Subjective evaluation

We carried out a second experiment to evaluate the sub-
jective experience of using the presented tactile system. We
considered the same six tactile interactions used in Sec. 3.1,
but we had to reduce the number of algorithm and device

Fig. 8. Experimental setup for subjective evaluation. The subject was
asked to wear the cutaneous device on his or her right index finger and
watch videos featuring the six tactile interactions. At the end of each
video, the subject rated how well the cutaneous device replicated the
sensations experienced by the sensor in the video.

versions to keep the experiment to a reasonable duration for
human subjects. Thus, we compared the two extreme step
sizes (3◦ and 9◦), the two extreme functions νn(·) (retrieving
1 and 8 neighbors), and the two extreme ways of controlling
the cutaneous device (one and three degrees of freedom).
Similar to Sec. 3.1, we tested these conditions for each of
the six remote interactions, ending up with 2 (step size
values) × 2 (nearest neighbor values) × 2 (DoF values) ×
6 (interactions) = 48 different conditions.

As shown in Fig. 8, the subject was asked to wear the
cutaneous device on his or her right index finger and look
at a 61-cm-diagonal LCD screen that presented the six tactile
interaction videos shown in Fig. 4. Each video was played
eight times, once for each considered combination of the
algorithm parameters and the device controller. As the video
played, the system sent the corresponding recorded tactile
data through our algorithm and drove the cutaneous device
accordingly, so that the subject felt on his or her finger a
particular rendering of what the BioTac was experiencing
in the video. Subjects were isolated from external noise
through a pair of headphones playing white noise, and their
vision of the cutaneous device was blocked by a cardboard
panel. At the end of each video, the subject was asked to
rate how well the cutaneous device replicated the sensations
experienced by the sensor in the video. The response was
given using a slider that ranged from 0 to 10, where a score
of 0 meant “very badly” and a score of 10 meant “very well”.

To determine the number of subjects needed for our
research study, we ran a power analysis using the G*Power
software. We estimated the effect size from the data re-
trieved in Sec. 3.1, expecting conditions showing higher
errors in Sec. 3.1 to lead to lower subjective ratings in this
experiment. Power analysis revealed that, in order to have
a 90% chance of detecting differences in our data, we would
need at least 10 participants (partial η2 = 0.836, effect size
2.258, actual power 0.92). Because it is difficult to estimate
a priori the correlation among repeated measures, we esti-
mated power as though the measures were independent.

Ten participants took part in the experiment, including
4 women and 6 men. Two of them had previous experience
with haptic interfaces. None of the participants reported any
deficiencies in their visual or haptic perception abilities, and
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Fig. 9. Selected results from subjective evaluation. Degrees of freedom
vs. rating for each tactile interaction for a representative configuration
(n = 1, step size angle during data collection 3◦).

all of them were right-hand dominant. The experimenter
explained the procedures and spent about five minutes ad-
justing the setup to be comfortable before the subject began
the experiment. Subjects consented to participate in this
study under the University of Pennsylvania Institutional
Review Board protocol #820095.

Fig. 9 shows the average rating vs. device degrees of
freedom for each tactile interaction for a representative
version of the algorithm (n = 1, θ = 3◦). One observes
a general trend of higher ratings with more degrees of
freedom. Furthermore, the simplest interaction (flat) has
approximately the same rating for both versions of the
device controller, while more complex interactions have
lower ratings that are more sensitive to controller version.
All of the results, averaged among tactile interactions, are
shown in Fig. 10. In order to compare the different algorithm
and device configurations, we ran a four-way repeated-
measures ANOVA. Step size during data collection, number
of neighbours retrieved by function ν(·), device degrees of
freedom, and type of tactile interaction were considered as
within-subject factors. In contrast to the objective analysis
presented in Sec. 3.1, it is important to note that we can
consider the type of tactile interaction as a within-subject
factor because we had ten independent measurements for
each condition, rather than a single experiment.

Ratings were subjected to the arcsine square root trans-
formation to stabilize variance [52]. All the transformed data
passed the Shapiro–Wilk normality test and Mauchly’s Test
of Sphericity. Sphericity was assumed for variables with
only two levels of repeated measures. The test revealed
a statistically significant change in the rating due to de-
vice degrees of freedom (F (1, 9) = 2369.184, p < 0.001,
partial η2 = 0.996), step size (F (1, 9) = 202.415, p <
0.001, partial η2 = 0.957), number of neighbors retrieved
(F (1, 9) = 208.951, p < 0.001, partial η2 = 0.959), and
type of tactile interaction (F (5, 45) = 198.972, p < 0.001,
partial η2 = 0.957). Moreover, there was a statistically
significant interaction between degrees of freedom and step
size (F (1, 9) = 10.782, p = 0.009, partial η2 = 0.545),
degrees of freedom and number of neighbors retrieved
(F (1, 9) = 6.015, p = 0.037, partial η2 = 0.401), step size
and number of neighbors retrieved (F (1, 9) = 88.307, p <
0.001, partial η2 = 0.908), degrees of freedom and tactile in-
teraction (F (5, 45) = 66.824, p < 0.001, partial η2 = 0.881),
and number of neighbors retrieved and tactile interaction
(F (5, 45) = 5.268, p = 0.001, partial η2 = 0.369).

For the type of tactile interaction, post hoc analysis with

Four-way repeated-measures ANOVA

Effect p value

degrees of freedom < 0.001

step size < 0.001

number of neighbors < 0.001

tactile interaction < 0.001

degrees of freedom × step size 0.009

degrees of freedom × number of neighbors 0.037

step size × number of neighbors < 0.001

degrees of freedom × tactile interactions < 0.001

number of neighbors × tactile interactions 0.001

Post hoc analysis with Bonferroni

tactile interactions p value

back-flat-back vs. left-flat-left < 0.001

back-flat-back vs. right-flat-right < 0.001

back-flat-back vs. flat < 0.001

back-flat-back vs. complex 0.007

tip-flat-tip vs. left-flat-left < 0.001

tip-flat-tip vs. right-flat-right < 0.001

tip-flat-tip vs. flat < 0.001

tip-flat-tip vs. complex 0.043

left-flat-left vs. flat < 0.001

left-flat-left vs. complex 0.007

right-flat-right vs. flat < 0.001

right-flat-right vs. complex 0.029

flat vs. complex < 0.001

TABLE 2
Summary of the statistical analyses for the subjective evaluation.

Bonferroni adjustments revealed a significant difference in
the rating of the back-flat-back interaction vs. left-flat-left
(p < 0.001), right-flat-right (p < 0.001), flat (p < 0.001),
and complex (p = 0.007) interactions; in the rating of the
tip-flat-tip interaction vs. left-flat-left (p < 0.001), right-flat-
right (p < 0.001), flat (p < 0.001), and complex (p = 0.043)
interactions; in the rating of the left-flat-left interaction vs.
flat (p < 0.001) and complex (p = 0.007) interactions; in the
rating of the right-flat-right interaction vs. flat (p < 0.001)
and complex (p = 0.029) interactions; and in the rating of
the flat interaction vs. the complex (p < 0.001) interaction.
Table 2 summarizes the results of this statistical analysis.

Similar to Sec. 3.1, this experiment also has a signifi-
cant interaction between step size and number of neigh-
bors retrieved by the algorithm: increasing the number of
neighbors reduces the difference between conditions with
dissimilar step sizes. To determine whether this difference
can be considered statistically negligible, we used the two
one-sided t-test (TOST) approach between conditions re-
trieving n = 8 neighbors, considering separately conditions
with different degrees of freedom. The two tested groups
are circled in Fig. 10b. We again evaluated the acceptance
criterion ε as suggested in [50]. The tests revealed statistical
equivalence between the 3◦ and 9◦ step sizes for both DoF
values.

4 DISCUSSION

We ran two experiments on remote tactile interaction. The
objective experiment in Sec. 3.1 evaluated the error between
the tactile sensations registered by the BioTac in the remote
environment and the ones actuated by the cutaneous device
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(a) degrees of freedom vs. rating, n = 1
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(c) step size vs. rating, 1-DoF configuration
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(d) step size vs. rating, 3-DoF configuration

Fig. 10. Results of subjective evaluation averaged across tactile interactions. Degrees of freedom vs. rating (Figs. a, b, c) and step size vs. rating
(Figs. d, e, f) are reported (mean ± standard error of the mean). Statistical analysis revealed a significant decrease of the user rating when reducing
the degrees of freedom of the cutaneous device, when increasing the step size during data collection, and when reducing the number of neighbors
retrieved by function ν(·). The dashed circles in Fig. 10b indicate the groups tested for equivalence using the two one-sided t-test (TOST). These
results agree with the findings of the objective evaluation, which are shown in Fig. 7.

for six tactile interactions and 27 algorithm and device con-
figurations. The subjective experiment in Sec. 3.2 evaluated
the quality of the human user’s experience for the same six
interactions and eight selected algorithm and device config-
urations. Both experiments showed improvements (lower
errors or higher subjective ratings) when increasing the
degrees of freedom of the cutaneous device, decreasing the
step size during data collection, and increasing the number
of neighbors retrieved by the search function.

Although it is clear that increasing the degrees of free-
dom of the cutaneous device leads to better performance,
the improvement from 2-DoF to 3-DoF is not as marked
as the one from 1-DoF to 2-DoF. This difference is clear
from Figs. 7a, 7b, 7c, and the statistical analysis reported
in Sec. 3.1. This fact can be explained by considering that
three of the six tactile interactions do not require the use of
the third degree of freedom (rotation around the long axis
of the finger). This dependence on tactile interaction is clear
from Fig. 6, where the average errors of the back-flat-back, tip-
flat-tip, and flat interactions do not change much between
the conditions with two and three degrees of freedom.
Moreover, from the same figure, we can also notice how the
average error of the flat interaction does not change much
across all three DoF values; this result is expected because it
is a 1-DoF interaction. A similar behavior can be also spotted
in Fig. 9, where the subjective ratings of the flat interaction
do not differ significantly between 1-DoF and 3-DoF.

A small step size guarantees fine search spaces S∗ and
M∗, which was found to produce higher performance in
terms of both mean error and user rating (see Figs. 7d, 7e, 7f
and Figs. 10c, 10d, respectively). However, as highlighted
in Sec. 2.2, the time needed to complete the data collection
phase grows cubically with the inverse of the step size. For

this reason, it is important to explore solutions guarantee-
ing adequate performance with coarser search spaces. This
work investigated the possibility of interpolating within the
motor space M∗ by retrieving multiple neighbors of the
sensed point. We hypothesized that this approach would
reduce the need for a small step size, providing comparable
performances at larger step sizes. From equality tests in
Sec. 3.1 and 3.2, we can conclude that increasing the number
of neighbors retrieved does mitigate the negative effect
of choosing a large step size during data collection. This
finding is also clear from Figs. 7a, 7b, 7c and Figs. 10a, 10b,
where lines depicting different step sizes get closer to each
other when increasing the number of neighbors retrieved.
However, notice also that more neighbors retrieved means
a higher run-time computational load.

Although it is clear that increasing the number of neigh-
bors retrieved leads to improved performance, it is impor-
tant to notice that this relationship is not linear. As we can
see from Figs. 7a, 7b, 7c, the improvement from n = 4 to
n = 8 is not as large as the one from n = 1 to n = 4. These
diminishing returns are due to the fact that each neighbor
is weighted according to the inverse of its squared distance
from the sensed point (see (7)), and, therefore, each new
neighbor counts less than all the preceding (closer) ones. It
is also interesting to notice that retrieving more than one
neighbor yields only a small improvement in performance,
if any, for small step sizes: the 3◦ condition is similar across
Figs. 7a, 7b, and 7c and across Figs. 10a and 10b. This
constant level of performance probably stems from the fact
that the motor space M∗ is already fine enough for the given
tactile experience and, thus, interpolating it is not necessary.

Turning our attention back to the six tactile interactions,
we recall that the flat interaction was rated most highly by
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subjects, as shown by Fig. 9 and the analysis of Sec. 3.2.
Because this interaction matched the motion available from
the 1-DoF device, it was rendered very well even when
driving the three servo motors together (left side of Fig. 9).
The performance of the other five interactions dramatically
improved when the device used all three of its degrees
of freedom (right side of Fig. 9). The post-hoc analysis of
Sec. 3.2 showed that the left-flat-left and right-flat-right inter-
actions performed significantly worse than the other tactile
interactions. Four of the subjects also stated this opinion in
their post-experiment questionnaire.

We believe the poor performance of left-flat-left and right-
flat-right was caused by two main factors. The first rea-
son is related to the distribution of the impedance-sensing
electrodes on the surface of the BioTac core. Each side of
the sensor includes only three electrodes, and we used Eu-
clidean distance when looking for neighbors; consequently,
the tactile sensations caused by platform contact on the sides
of the BioTac may be less noticeable than tactile information
from other types of interactions. The second factor centers
on the shape of the platform and the positioning of the servo
motors. During the data collection phase, we noticed that
the selected cutaneous device struggles to apply pressure
to only the lateral electrodes: the motor at the front of the
device stimulates all the distal electrodes, while the two
motors placed at the rear leave the distal lateral part of the
BioTac untouched. If such interactions were important to
the chosen task, one could design a tactile sensor and/or
cutaneous device that were more adept at measuring and
applying lateral contacts.

5 CONCLUSIONS AND FUTURE WORK

This article presents a novel algorithm to map the cutaneous
stimuli registered by a fingertip tactile sensor to the actions
of a fingertip cutaneous haptic interface. The algorithm
is compatible with any fingertip mechanical sensor and
mechanical actuation system and does not use any kind of
skin deformation model. Instead, it maps the sensed stimuli
directly to the best input commands for the device’s motors.

In order to validate the proposed approach, we carried
out two remote tactile interaction experiments, employing a
BioTac tactile sensor and a custom 3-DoF cutaneous device.
The first experiment evaluated the error between the tactile
sensations measured by the BioTac in a remote environment
and the ones actuated by the cutaneous device for six remote
tactile interactions and 27 algorithm and device configura-
tions. The average error in the best condition was 3.0% of the
full 12-bit scale the BioTac can reach, which is in agreement
with the preliminary results reported in [36]. The second
experiment evaluated the subjective experience of ten users
for the same six interactions and eight selected algorithm
and device configurations. The average rating for the best
condition was 8.2 out of 10.

Although quite effective, this approach has a few limita-
tions. For example, the output bandwidth is limited by the
system sampling rate, the response speed of the motors, and
the fact that the data set was collected during static condi-
tions. Our approach does not use in fact any controller terms
that respond to the changes in tactile sensations (i.e., how
motor velocity affects tactile sensations over time), since
we were interested in understanding how well this simpler

quasi-static tracking approach would work. However, the
amount of data required for our quasi-static approach is
already very large, so it is not likely that one could collect
a data set that sampled all motors for both position and
velocity, as would be required to apply this approach to
dynamic trajectories.

In the near future, we plan to embed a broad-bandwidth
vibrotactile motor in the mobile platform, to enable the
system to display vibration cues as well as fingertip defor-
mation. The presented algorithm will need to be updated to
take into account the AC signals detected by the BioTac’s
hydro-acoustic pressure sensor and then find a suitable
transfer function between them and the vibrotactile motor’s
input signal. Moreover, we will update the mapping algo-
rithm and experimental protocol to consider the dynamic
behavior of the motor. We are also interested in augmenting
our approach to compensate for variability in the size and
shape of the fingertip among different users. We envision
adding a user-specific calibration wherein the mobile plat-
form of the device makes and breaks contact with the user’s
fingertip from many different angles. We will then shift the
motor angles recorded during data collection so that the
platform makes contact with the user’s finger at the same
time that the BioTac makes contact with the remote environ-
ment. Finally, we plan to incorporate our haptic system into
a more complex robotic teleoperation system, wherein the
BioTac senses the fingertip’s tactile sensations at the slave
side and the 3-DoF cutaneous device applies these sensa-
tions to the fingertip of the human operator. Applications
range from robot-assisted surgery to fine manipulation and
grasping. The proposed system seems particularly promis-
ing for medical scenarios, since cutaneous feedback can be
employed in teleoperated medical procedures to provide the
clinician with haptic cues without causing instability.
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