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Abstract— Cooperative manipulation, where several robots
jointly manipulate an object from an initial configuration to
a final configuration while preserving the robot formation,
poses a great challenge in robotics. Here, we treat the problem
of designing motion primitives for cooperative manipulation
such that the robots move in formation and are robust with
respect to external disturbances. Individual robot trajectories
are generated by Dynamic Movement Primitives (DMPs) and
coupled by a formation control approach enabling the DMP-
trajectories to preserve a given formation while performing
the manipulation. The proposed control scheme achieves an in-
creased adaptability under external disturbances. The approach
is evaluated in a full-scale experiment with two prototypical
cooperative manipulation and synchronized motion tasks.

I. INTRODUCTION

Physical cooperation of robotic manipulators is important

in a wide variety of tasks such as joint object manipula-

tion under formation constraints and synchronized handover

tasks. Application domains are for example in manufactur-

ing, logistics, disaster relief, and service robotics. A coopera-

tive manipulation task is considered effectively accomplished

when the multi-robot team jointly manipulates the object

from an initial configuration to a final configuration without

damaging the object, i.e. without exerting excessive forces. If

the robots are able to maintain a rigid formation, , the internal

forces are significantly reduced [1]. In order to achieve

successful task execution, a flexible, robust, and distributed

control mechanism is required. The control architecture is

called distributed if there is no central coordinating entity,

i.e. each manipulator has its own local controller which

may communicate with other local controllers to achieve the

overall control goal.

Different control approaches have been proposed for co-

operative manipulation. A popular approach is based on

distributed impedance control, see for example [2]–[4].

Those approaches decouple the path planning and the con-

trol, i.e. individual trajectories are planned for each robotic

manipulator taking into account the object geometry and

grasp points [5], [6]. If feedback is missing in the path

planning, those approaches are very sensitive to the initial

configuration, the model accuracy, and in particular to ex-

ternal disturbances from the environment [7]. Embedding

the formation rigidity constraint in an LQR-like optimal

control problem is proposed in [8]. However, the approach

only considers the maintenance of the rigidity constraint

All authors are with the Institute for Information-Oriented Control, De-
partment of Electrical Engineering and Information Technology, Technische
Universität München, D-80290 Munich, Germany. {jonas.umlauft
,dominik.sieber, hirche}@tum.de

and is not suitable for establishing formations and synchro-

nized movements. A powerful tool for representing discrete

and periodic trajectories are Dynamic Movement Primitives

(DMPs) developed in [9] and [10]. DMPs are mainly used for

imitation and learning tasks of a single manipulator and are

therefore useful for representing and generating human-like

movements. To the best of the authors knowledge, multiple

dynamic motor primitives have not yet been investigated in

depth for cooperative manipulation except for preliminary

work in [11], where a bimanual task with force feedback is

considered without considering more than two DMPs.

The main contribution of the paper is a novel control

approach for cooperative manipulation and movement syn-

chronization. The approach is based on formation control

and coupled DMP-based trajectory planning. Here, DMPs

generate individual manipulator trajectories to a desired

final configuration, which is in agreement with the initial

configuration of the multi-robot team. During the tracking

phase, it may happen that individual DMPs violate the

formation rigidity or disturbances occur on a single ma-

nipulator. The issue is circumvented in our approach by

using a formation-preserving feedback for each DMP. Minor

remaining deviations from the formation are accommodated

by local impedance control laws in each manipulator such

that they react compliantly to their environment. Our pro-

posed control and trajectory generation approach is evaluated

in experiments and its robustness against perturbations and

reduced internal forces on the object are demonstrated for

cooperative manipulation and synchronized motion tasks.

The remainder of the paper is structured as follows. Sec-

tion II formally describes DMPs and formation control. The

proposed extension for DMPs for cooperative manipulation

is presented in Section III, the experimental evaluation is

presented in Section IV.

Notation: Bold symbols denote vectors. ‖a‖ represents

the Euclidian norm of vector a. ai relates the variable to i
th manipulator. ai,k relates the variable to the k th state of

manipulator i. The n× n identity matrix is denoted as In.

II. BACKGROUND

In this section we present the necessary background on

DMPs, formation control, and impedance control.

A. Dynamic Movement Primitives (DMPs)

DMPs provide generalized trajectories for discrete and

periodic movements of a robotic manipulator to drive from an

initial position x0 to a goal position g. DMPs can represent

complex movements while being capable to incorporate



feedback in real-time [12]. The following attractor dynamic

ensures that the solution of the point attractive system, the

trajectory x(t), converges towards the goal g [13]

τ ż = α(β(g − x)− z) + f(s) (1)

τ ẋ = z (2)

with the nonlinearity f(s) defined as

f(s) =

∑W
i=1 wiΨi(s)

∑W
i=1 Ψi(s)

s, Ψi(s) = exp
(

−hi (s− bi)
2
)

(3)

where wi, bi, hi are the weights, the centers and the radii,

respectively, of the radial basis function distributed along

the trajectory. Those parameters are determined during the

learning process using Locally Weighted Projection Regres-

sion (LWPR) [14]. The parameters α, β > 0 are set prior to

the learning process. The timing parameter τ > 0 is adjusted

before the execution of the movement to speed it up or slow

it down compared to the demonstration. A phase variable s
is used in (3) instead of time to make the dependency of

f(s) on time more implicit [13]. The dynamics of the phase

variable s are defined by a canonical system

τ ṡ = −γs, γ > 0. (4)

The advantage of using the phase variable s instead of

explicit time is that we are able to modify the evolution of

time by appropriately adapting (4) during execution [13].

Thus by decelerating the canonical system, it is possible

to slow down the execution of the steering function f(s),
which reduces the speed of the movement, e.g. in case of

disturbances. Obviously, s → 0 as t → ∞ and therefore

the nonlinear function f(s) tends to zero as time increases.

Thus, the asymptotically stable equilibrium point of the point

attractive system (1),(2) is
[

z∗ x∗
]

=
[

0 g
]

.

As a result trajectories x(t) generated by DMPs ensure the

discrete movement from the initial point x0 to the goal g.

DMPs are also used to generate trajectories for periodic

movements. In contrast to discrete movements the steering

function f will not approach zero because it is a weighted

sum of periodic functions Γ(φ) multiplied by the amplitude r
of the oscillation.

f(φ) =

∑W
i=1 wiΓi(φ)

∑W
i=1 Γi(φ)

r

Γ(φ) = exp (−hi (cos(φ− bi)− 1)) , (5)

The function f(φ) is used to modify the dynamics of the

basic second-order system (1), (2) [15]. Rewriting (1) and

(2) using the frequency of the oscillation Ω = 1/τ yields

ż = Ω(α(β(g − x)− z) + f(φ)) (6)

ẋ = Ωz. (7)

For periodical movements, the phase variable φ increases

constantly as opposed to s and is given by

φ̇ = Ω. (8)

B. Formation Control

A common approach to formation control is to use a

Artificial Potential Field (APF) in order to achieve a desired

distance dij between two agents i and j [16]. Often a

quadratic potential field Vij (‖xi − xj‖) is considered which

has its global minimum at the desired distance dij

Vij (‖xi − xj‖) =
1

2
(‖xi − xj‖ − dij)

2
. (9)

From the potential field, a control signal ui for the i-th agent

is derived based on the gradient descent

ui = −
∑

j∈Ni

δij
∂Vij (‖xi − xj‖)

∂xi

(10)

= −
∑

j∈Ni

δij
xi − xj

‖xi − xj‖
(‖xi − xj‖ − dij),

where δij is a positive parameter that is used to adjust the

speed of convergence to the desired formation. Under this

control law all agents converge to the desired formation [17].

C. Impedance Control

In order to accommodate for minor deviations of the

desired position trajectories from the formation constraints

we propose to employ impedance control here. Therefore, the

manipulator measures contact forces at its end-effector. The

Cartesian impedance control law is described as following

M ë+Dė+Ke = ζ, (11)

where M,D,K ∈ R
n×n are the mass, the damping and

the stiffness matrices, respectively. Here, n denotes the

workspace dimension, ζ ∈ R
n is the applied force and

e = x̄−x is the deviation of the actual end effector position

x̄ ∈ R
n from the desired position x ∈ R

n. The trajectories

for the desired positions x, velocities ẋ, and accelerations

ẍ are required as input to the impedance control law and

are generated using DMPs. The position xi is expressed in

a world coordinate system Σw which requires that each end-

effector is aware of its transformation to a common reference.

III. COOPERATIVE DMPS

The goal is to introduce a novel approach for DMP-based

formation control for generating cooperative movements of

N manipulators in a n-dimensional workspace. For the

proposed control law, rotational motions of each manipulator

are neglected so that the DMPs are represented by decoupled

dynamics for each Cartesian degree of freedom (DoF).

For each degree of freedom we use a single point attractive

system (1), (2) and one canonical system (4). Here, xi

denotes the state of the manipulator i, which consists of

the Cartesian positions xi,k in each dimension k of the

workspace, thus xi = [xi,1, . . . , xi,n]
T . The states of all

manipulators are concatenated into x = [xT
1 , . . . ,x

T
N ]T .

Note that, xi,k describes the single state of a manipulator

corresponding to the x used in (1),(2). The goal configura-

tion g is an accordingly concatenated vector. The desired

trajectory x, ẋ which is generated by n × N DMPs and



tracked by the impedance control law (11) requires to satisfy

the rigidity constraint among the cooperating manipulators.

Since each DMP only knows its own state, we establish a

communication link between neighboring DMPs and employ

a cooperative term to modify the individual states. A DMP

is called a neighbor of another DMP, if formation rigidity

requires a desired distance to be maintained. Here, each DMP

relies on the relative position to its neighbors and is attractive

to the desired formation even under external disturbances.

The graph representing the communication structure among

the systems of DMPs which is formulated by the neighboring

set is chosen such that the minimum number of neighbors

for rigidity of the formation is guaranteed. For more details

on formation rigidity the reader is referred to [18].

In order to extend DMPs for cooperative manipulation the

ability to react to the movements of other manipulators is

important. Therefore we introduce a cooperation feedback

term into the DMPs. Our approach is inspired by [9] where

DMPs are enhanced to react to external perturbations. Ac-

cording to [12] the point attractive system (1) and (2) can

be augmented to incorporate feedback as follows

τ ż = α(β(g − x)− z) + f(s) (12)

τ ẋ = z + αerr(x̃− x), (13)

where x̃ denotes the measured position of the manipulator,

whereas x is the desired position. The slowing of the

phase variable s until the error is reduced is a key feature

of this approach. Note that the phase variable s directly

controls the steering function f(s), which also decelerates

proceeding until the error is compensated. According to [15]

the canonical system is augmented to

τ ṡ = −
γs

1 + γerr(x̃− x)2
. (14)

Here, we propose to use a feedback term to enforce the

formation based on the input given by the formation control

law in (10). Therefore, a deviation in the relative distance

of the neighbors to the desired distance dij is interpreted as

an error term and is compensated before further proceeding

to the goal. The point attractive system and the canonical

system of manipulator i in dimension k is reformulated as

τ żi,k = αi,k(βi,k(gi,k − xi,k)− zi,k) + fi,k(si,k), (15)

τ ẋi,k = zi,k + κi,kci,k(x), (16)

τ ṡi,k = −
γi,ksi,k

1 + ηi,kc2i,k(x)
. (17)

where ηi,k and κi,k are both positive weighting parameters

for the cooperation term ci,k(x) which is the k-th dimension

of ci(x). For the cooperation term we use the input of the

control law for formation control ci(x) = ui, i.e.

ci(x) = −
∑

j∈Ni

δij
xi − xj

‖xi − xj‖
(‖xi − xj‖ − dij).

Thus, the cooperation term is zero if the desired distances

to all neighbors are maintained and (15), (16), (17) are

equivalent to the original DMPs from (1) , (2) and (4),

Task plan:
dij , g
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Formation
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...
...
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(1) − (4)
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(11)

(11)

xN

x1g
1
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cN

Fig. 1: General control approach for cooperative DMP

respectively. In case ci(x) increases the canonical system

is decelerated and the steering function is delayed. Through

ci(x) 6= 0, an additional acceleration on the point attractive

system is acting, which tends to restore the desired distance.

Choosing the parameters ηi,k and κi,k such

that ηi,k, κi,k ≫ 1 ∀i, k, a better formation maintenance

is ensured but it might take more time to reach the goal.

In case the formation is violated, higher ηi,k decelerate the

canonical systems and thus the execution of the steering

functions. Increasing κi,k affects the point attractive systems

to react faster to disturbances of the formation. Given

this enhancement, DMPs are applicable for a cooperative

manipulation task or the generation of synchronized periodic

movement. The schematic overview of the control scheme

and its references in this work are illustrated in Fig. 1.

A task plan provides the goal configurations g and the

inter-robot distances dij . The individual desired trajectories

are generated by DMPs and then tracked by the impedance.

A cooperative feedback term is introduced to enforce the

desired distance by a formation control law.

Equilibria and Domain of Attraction

As the point attracting system (15) and (16) and the canon-

ical system (17) are modified we investigate the equilibria

of the attractor landscape of the augmented system. Anal-

ogously to the argumentation in [9], the stability properties

of the canonical system are preserved, i.e. the equilibrium

s∗i,k = 0 of (17) is asymptotically stable and derived from

τ ṡ∗i,k = −
γi,ks

∗
i,k

1 + ηi,kc2i,k(x
∗)

!
= 0 → s∗i,k = 0 ∀i, k.

Recalling the definition of the nonlinear function f(s) in

(3), it is obvious that f(s) → 0 for s → 0. Therefore the

equilibrium point of system (15), (16) is derived using

τ ż∗i,k = αi,k(βi,k(gi,k − x∗
i,k)− z∗i,k)

!
= 0 (18)

τ ẋ∗
i,k = z∗i,k + κi,kci,k(x

∗)
!
= 0. (19)

From (19) one concludes that z∗i,k = −κi,kci,k(x
∗). Using

this in (18) we obtain the following condition for equilibria

x∗
i,k = gi,k +

κi,k

βi,k

ci,k(x
∗) ∀i, k (20)

For illustration we compute the equilibria for two agents.

The computation of the equilibria for N agents from (20)

is straightforward. For simplicity of the subsequent anal-

ysis we set βi,k = κi,k = 1 and δij = 1, ∀i, j. Us-

ing d12 = d21 = ‖g1 − g2‖, (20) results in x∗
1 = g1 − (x∗

1 −
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Fig. 2: Top: Two manipulators x1, x2 approach the goal configurations g1, g2 along the domain of attraction in opposite

sequence to the goals. In the middle column, manipulator x2 reaches its goal position g2 first, but x1 endeavors to reach

goal g1 which is 2d12 away. Due to the virtual coupling force of the cooperation term, x1 gets pushed away until both

manipulators reach the undesired equilibrium in balance. Bottom: One undesired equilibrium for three manipulators .

x∗
2)

(

1− ‖g1−g2‖
‖x∗

1
−x∗

2
‖

)

and x∗
2 = g2−(x∗

2−x∗
1)

(

1− ‖g1−g2‖
‖x∗

2
−x∗

1
‖

)

.

As a result we obtain the desired equilibrium

x∗
1 = g1, x∗

2 = g2

and an undesired equilibrium

x∗
1 = g2 +

1

3
(g1 − g2) , x∗

2 = g2 +
2

3
(g1 − g2) .

In the desired equilibrium the agents have attained their

goal positions g1 and g2 which are formation consistent. In

the undesired equilibrium the agents do not reach their goal

positions and do not maintain the formation. The undesired

equilibrium is approached if the two vector fields of goal

attraction x∗
i,k − gi,k and cooperation term

κi,k

βi,k
ci,k(x

∗)
cancel each other out, which is illustrated in the top row of

Fig. 2. A cancellation is possible if the vectors are linearly

dependent and point in opposite directions. This explana-

tion also provides an intuitive understanding of the domain

of attraction of the undesired equilibrium. The domain of

attraction describes the subspace, from which the agents

start and can end up in an undesired equilibrium. Here, the

domain of attraction of the undesired equilibrium is given by

a line through the goal configurations with both agents being

in switched configuration (compared to the goal positions).

For practical application the undesired equilibrium is largely

irrelevant as small perturbations allow the agents to escape

this domain. For N = 3 one undesired equilibrium is

illustrated in the bottom row of Fig. 2. In case of more agents

the approach is similar, however the undesired equilibria and

their domain of attraction is more complicated to compute;

its formal analysis is still part of ongoing research.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

The experimental setup consists of two commercially

available KUKA LWR 4+ (light-weight robot), see Fig. 3.

Both manipulators are assembled on top of the same mobile

platform in order to avoid issues such as communication and

kinematic uncertainties at this preliminary stage. A Carte-

sian impedance control scheme (11) is employed to ensure

compliance of the end-effectors. Both Cartesian positions are

captured by a QualiSys motion capture system. A workspace

extension by a mobile platform of both robotic manipulators

is accomplished according to the approach presented in [3].

The manipulator motion and the mobile platform motion

are kinematically decoupled in task-space with an employed

potential function. The parameters for DMPs are chosen

equally for each manipulator in all dimensions as exhibited

in Table I distinguished in discrete and periodic movements.

Eq.
Discrete

Movement
Periodic

movement

Attractor system (15) αi,k = 5, βi,k = 0.01, ∀i, k

Canonical system (17) γi,k = 0.01, ∀i, k

Time scaling (16) τ = 20
1

s
Ω = 1s

Cooperation weight
with cooperation

(16),(17) ηi,k = κi,k = 10 ηi,k = κi,k = 1

Cooperation weight
without cooperation

(16),(17) ηi,k = κi,k = 0, ∀i, k

Impedance parame-
ters

(11) M = 10I3, D = 120I3,K = 160I3

TABLE I: Control parameters used in experiments

B. Discrete Movement in Cooperative Manipulation

The objective of this first task is to demonstrate that

cooperating DMPs maintain the formation in case of dis-

turbances and compensate the deviations caused by other

Fig. 3: The robot platform used in the experiments
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Fig. 4: Multi-robot trajectories of the end-effectors in 2D space tracking a trajectory. Without cooperation a disturbance

acting on one manipulator has no effect on the other. In cooperation both manipulators are virtually coupled.

robotic manipulators. For this experiment, the robot per-

forms a planar cooperative manipulation task with two end-

effectors. The desired trajectory xdemo is generated from

demonstrations by LWPR [14]. The task is to carry a beam

in a discrete movement. In order to demonstrate the efficacy

of our proposed approach, we remove the beam between the

manipulators and identify the effect of cooperation without

physical coupling. During the movement a disturbance is

imposed on one robotic manipulator by pushing against it.

Due to the impedance control law the manipulator deviates

from the desired trajectory x2.

The results of this experiment are shown in Fig. 4. It

is obvious that a disturbance acting on manipulator has no

effect on the other one if cooperation feedback is turned off.

When the cooperation feedback is turned on, the disturbance

affects both manipulators simultaneously. As desired, the

formation is restored by the cooperative DMP approach.

C. Motion Synchronization

The second experiment investigates the idea of cooperating

DMPs for periodic movements. For this experiment both

manipulators oscillate in phase with the same frequency

and amplitude in one direction. During this experiment we

turn the formation feedback on and off and observe the

synchronization of two manipulators after being out of phase.

We simulate a disturbance on one of the manipulators by

fixing it manually for a short time. With this experiments,

we demonstrate that disturbances acting on one of the ma-

nipulator also affect the trajectories of the other manipulator.

The results of this experiment with and without coop-

eration are shown in Fig. 5. After one cycle (≈ 8s) the

cooperation is turned off and the two manipulators are

drifting apart. At t ≈ 18s manipulator 1 is fixed at its

current position manually, simulating a disturbance. After

it is released at t ≈ 22s it keeps oscillating but the two

manipulators are not in phase. So at t ≈ 26s the cooperation

is turned on again and a both manipulators are synchronizing.

D. Reducing internal forces

In a further experiment we show the reduction of internal

forces acting on the object. In this experiment both manip-

ulators follow a discrete movement. A beam is rotationally

free fixed at the manipulators. For the discrete movement

individual trajectories are generated using DMPs which

violate the formation constraint.

Using DMPs without cooperation results in significant in-

ternal forces acting on the object because both manipulators

follow trajectories that deviate from the desired formation.

Due to impedance control the deviation causes a force on

the object defined by (11). Using cooperative DMPs the

trajectories are adjusted such that they match the desired

formation. As desired, this results in reduction of forces

acting on the object as shown in Fig. 6.

V. CONCLUSIONS

In this paper we propose a novel control approach for

cooperative manipulation and synchronization based on co-

operative dynamic movement primitives (DMPs). A coop-

eration feedback term based on an artificial potential field

for formation control is introduced into the original DMP

formulation. The equilibria analysis provides desired and un-

desired equilibria, however, the undesired equilibria turn out

to be of no practical relevance. The effectiveness and quality

of the proposed controller with respect to disturbances is

successfully demonstrated in experiments.
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