
Performance and energy characterization
of high-performance low-cost cornerness detection

on GPUs and multicores

Apostolos Glenis
Institute of Computer Science

FORTH
Heraclion, Greece

Email: aglenis@ics.forth.gr

Sergios Petridis
Institute of Informatics and Telecommunications

NCSR “Demokritos”
Agia Paraskevi, Greece

Email: petridis@iit.demokritos.gr

Abstract—Feature detection and tracking is an important
problem in Computer Vision. Corners in an image are a good
indication of features to track. Original algorithms may be
expensive even on multicore architectures because they require
full convolutions to be performed. Although these can be
performed in real time in modern GPUs and multicore CPUs,
faster solutions are needed for embedded systems and complex
algorithms, given that corner detections is just a step of the
analysis process. In this paper we evaluate the performance
and energy efficiency of the Harris corner detection algorithm
as well as an approximation of it, in both desktop and
mobile platforms. The purpose of this paper is three-fold:
evaluate the performance gains of GPUs vs. CPUs for several
mobile and desktop systems, evaluate whether the Harris
approximation provides adequate performance gains to justify
its use in mobile and desktop system configurations and, finally,
determine which configurations provide real-time performance.
According to our evaluation (a) the best GPU solution is 16.3
times faster than the best CPU solution for the desktop case
while being 2.6 times more energy efficient and (b) the best
GPU solution for the mobile case is 1.2 times faster while being
3.6 times more energy efficient than the respective CPU.

Keywords-Harris corner detection, CUDA, mobile computing

I. INTRODUCTION

From the time programmable GPUs emerged to the mar-
ket, several successful attempts have been made in porting
Computer Vision algorithms to them and exploring the
performance and energy gains from their use [1]–[6]. As
mobile platforms become more pervasive, computer vision
algorithms get ported to mobile platforms that use a GPU
to exploit the available data parallelism [7]–[13]

Feature detection is an important but computationally in-
tensive step of computer vision algorithms. This leads to the
need for approximation algorithms especially for embedded
platforms. As Moore’s law fails to scale, chip manufacturers
cramp more cores into a single Central Processing Unit
(CPU) chip to provide scalability. However, as more chips
gets cramped into a single core, energy efficiency becomes
a major concern. All the above have lead to algorithms
being ported to Graphical Processing Units (GPUs) because
of their design. The Harris feature detection algorithm [14]

has massive amounts of parallelism and therefore is a great
candidate for porting to a massively parallel architecture
such as modern GPUs. In this paper we evaluated both
the initial Harris corner detection algorithm as well as a
fast variant [15] in terms of their performance and energy
efficiency in desktop and mobile platforms equipped with
a variety of CPUs and GPUs. The paper is structured as
follows: Section II describes the implementation of the
Harris detector versions used for comparison, including
details on GPU optimizations. Section III presents the results
of our performance evaluation and, finally, in Section IV we
describe ways in which the detector can be improved as well
as future research directions.

II. FEATURE DETECTION USING THE HARRIS KERNEL

A. The baseline algorithm

As a reference implementation, Harris feature detector has
been considered as implemented in the OpenCV Computer
Vision library [16], though with some modifications, so that
a comparison with the fast alternative would be meaningful.
In partucular, to provide a fair comparison, the OpenCV
Harris feature detector has been reimplemented. Hereafter,
we will referred to this implementation as the ”baseline”
Harris implementation. The Harris feature detection, as we
implemented it, is comprised of three steps:

1) Sobel edge detection to approximate the gradients in
the x and y direction

2) Application of the Harris cornerness detection kernel
(with a 9× 9 window for our experiments)

3) Non-maxima suppression to avoid corners with ex-
treme spatial locality.

B. The fast approximation

The main advantage of the approximate Harris Detector is
it’s reduced complexity compared to the baseline algorithm.
Although Gaussian convolution can be performed as two
separate filters, thus reducing the complexity substantially,
using integral images [17] we can compute an approximation



Table I
REDUCTION OF THE COMPUTATION COST FOR THE CONVOLUTION

Additions Mult/ions Total

Gaussian 2 ·N 2 ·N 4 ·N
LC-Harris 2 + 3 · 2 1 9

Table II
REDUCTION OF THE COMPUTATION COST FOR THE CORNERNESS

DETECTION

Additions Mult/ions Total

baseline 3 · w · w 3 · w · w 6 · w · w
LC-Harris 3 · (2 + 3) + 3 3 + 4 18 + 7

of the Gaussian derivative with constant number of oper-
ations per pixel at any window size. This also applies to
the cornerness detection mechanism, where using integral
images reduces complexity with no actual cost in accuracy.
Using box filters, we can have great benefits for embedded
platforms where computational resources are limited.

The approximation algorithm is based on the notion that
using integral images we can sum an area of an image in
constant time. The steps of the algorithm are as follows:

1) Calculate the integral image of the original image.
2) Compute the gradients gx and gy using the integral

image for the Gaussian kernel approximation.
3) Compute the integral image of gx2 , gy2 and gxgy to

use for the cornerness metric evaluation.
4) Evaluate the cornerness response R for each pixel of

the image.
5) Perform non-maxima suppression to obtain the final

cornerness image
The main difference between the two algorithms is that the
approximation algorithm uses integral images to compute the
gradients needed to evaluate the cornerness response. This
means that we end up doing three convolutions less than the
original algorithm. The added speedup comes with a space
overhead since now we need to store four additional arrays
for the integral images. With the approximate algorithm the
window size does not affect complexity.

C. Optimizations in the GPU version

The algorithm in question has been ported to GPUs by
[18]. Our initial implementation closely resembles the one
presented in that paper.

A key part in the algorithm we consider is computing
integral images. There are a few ways of performing integral
image computations. The most common and easy to imple-
ment is to do a prefix scan followed by a matrix transpose,
followed by a prefix scan, and then another transpose to fix
the orientation of the image as proposed by [19]. Another
more efficient approach that uses tiling is proposed in [20].

We tried to optimize the baseline GPU implementation by
using different available libraries to compute integral images.

Table III
TWO-DIMENSIONAL PREFIX-SCAN ON THE GPU (MILLISECONDS)

Resolution CUB CUDPP THRUST

1024× 1024 0.12 0.16 1.08
4096× 4096 1.68 2.23 10.5

Table IV
INTEGRAL IMAGE COMPUTATION ON THE GPU (MILLISECONDS)

Resolution CUB CUDPP THRUST

1024× 1024 0.4 0.35 2.03
4096× 4096 5.7 6.7 23

Our original CUDA implementation uses CUDPP [21] for
a high performance two-dimensional prefix scan implemen-
tation. In addition to the CUDPP implementation of integral
images the programmer can use either CUB [22] or Thrust
[23] to implement a two dimensional prefix scan operation.

To decide which implementation to use, we evaluated
our optimizations to the GPU version on the desktop with
GTX480, to choose the best way of performing the integral
image calculation (see Section III-A for details about the
system descriptions). The CUDPP implementation tested is
similar to the one proposed by [19]. Our results, shown at
Table III, indicate that Thrust’s approach is not optimal and
CUDPP and CUB perform almost identically. As Table IV
shows the results are similar to the prefix-scan case but the
effect of the prefix scan is mitigated by the cost of the
transpose steps of the algorithm.

In conclusion, the CUB implementation gave the best
performance so we used that for the evaluation.

III. EVALUATION

A. Test cases

The primary system for testing was employed with a
GeForce GTX480 with 1.5 GB of RAM and a GTS450 with
1 GB of RAM. The CPU was an Intel Core2Duo operating
at 3.6Ghz with 4GB of RAM. A secondary system with
an Intel i7 was used to evaluate the algorithm on a more
modern system, and see how a faster system would affect
the algorithms in question. For the mobile versions we used
two systems:

1) a ZOTAC ZBOX ID84 with a CedarTrail Atom
chipset, a dual-core D2550 1.86 GHz processor and
Nvidia Geforce GT 520M

2) an ASUS U36JC with Intel Core i5 480M operating
at 2.66 GHz and a Nvidia 310m

A summary of the different processors used for evaluation
is shown at Table V

B. Evaluation Metrics

We used two metrics to perform out evaluation : Frames
per Second and Performance per Watt.



Table V
CHARACTERISTICS OF THE PROCESSORS USED FOR EVALUATION

ArchitectureProcessing
Cores

Clock Frequency
(Ghz)

Max
memory
band-
width
(GB/s)

TDP(W)

Atom 2 1.86 6.4 10
GTX480 448 1.215 133 250
GTS450 192 1.566 57 106
core2duo 2 3.6 7 65
310m 16 1.53 9.1 14
520m 48 1.6 14.4 12
i7 8 3.5 25.7 77
i5 4 2.66 17.1 35

Table VI
SERIAL VS GPU IMPLEMENTATION

resolution speedup
compute
core2duo

speedup
compute
i7

speedup
mem
core2duo

speedup
mem i7

512× 512 16.3 7.8 12.8 6.1
1024× 768 16.2 11.8 12.6 9.2

• Frames per Second (FPS) is the total number of video
frames processed divided by the total (wall) time taken
to process them.

• Performance per Watt is defined as the FPS divided
by the Thermal Design Power (TDP) of the processor.

C. Results for the desktop-case experiments

1) Execution Times:
CPU vs GPU: The GPU implementation provides

significant speedup compared to the serial implementation
in both test systems. The data transfer overhead seems to
matter a lot less as the image size increases, which is evident
because speedup for the computation is getting closer to the
speedup measured when including the data transfer. This
happens because as the resolution increases, the computation
part of the algorithm becomes a lot more time consuming
than the data transfer to and from the GPU. Table VI
shows that our detector is 16 times faster than its serial
counterpart in the core2 system and 12 times faster in the
i7 system. As shown in Figures 1(a) and 1(b), the GPUs are
consistently much faster than the CPUs. Also the high-end
GPU performs roughly two times better than the mid-end
GPU, which was expected according to their specifications
given that GTX480 has twice the amount of processing cores
and memory bandwidth than GTS480.

Baseline versus fast implementation on the CPU: The
approximate algorithm is twice as fast as the baseline Harris
detector and the difference would have been even greater
if we had used larger window sizes. Comparing the two
different processor we observe that the increased memory
bandwidth in the i7 makes the algorithm twice as fast.

(a) Fast Harris

(b) Baseline Harris
Figure 1. FPS results in desktop system

Table VII
REALTIME CONFIGURATIONS FOR THE DESKTOP SYSTEM

Baseline Harris Fast Harris
Architecture Resolution fps Resolution fps

GTX480 1024× 1024 197 1024× 1024 193
GTS450 1024× 1024 78 1024× 1024 64
core2duo 256× 256 91 512× 512 41
i7 512× 512 39 512× 512 85

Baseline versus fast implementation on the GPU: The
fast corner detector performs worse than the baseline on
desktop GPUs. We speculate that this happens for a number
of reasons:the window size used for edge detection as well as
the cornerness evaluation in the baseline Harris is relatively
small so even the theoretical gains are slim for the edge
detection phase of the algorithm. Also the baseline Harris
requires less steps and less bookkeeping to complete so if
the computational complexity of the convolution is hidden



(a) Fast Harris

(b) Baseline Harris
Figure 2. Energy Efficiency for the Desktop System

because of the parallelism then the baseline Harris can
achieve better performance than the approximate algorithm.

2) Energy Efficiency: After comparing the energy ef-
ficiency of the two GPUs we noticed that GTX480 has
almost double the performance in all configurations com-
pared to the GTS450. In the small resolution the difference
is slightly lower because the high-end GPU is not fully
occupied. In the first resolution the GTS450 is visibly better
in the performance per watt comparison as the resolution
increases GTX480 recovers the lost ground and finally wins
in the larger resolution. From the two remarks above we
can conclude the high-end GPU is not always the best
choice when energy costs are taken into account as show
in Figures 2(a) and 2(b). Moving to the CPU results the
i7 processor is consistently two times faster both in Harris
and fast Harris compared to the core2duo and because they
consume roughly the same power the i7 is roughly two times
more energy efficient as shown in Figures 2(a) and 2(b).

Table VIII
REALTIME CONFIGURATIONS FOR THE MOBILE SYSTEMS

Baseline Harris Fast Harris
Architecture Resolution fps Resolution fps

Atom N/A 256× 256 38
i5 256× 256 89 512× 512 49
310m 512× 512 25 256× 256 89
520m 512× 512 67 512× 512 40

3) Conclusions: In baseline Harris we have to limit the
resolution to 512 × 512 for the i7 to sustain real-time
performance and to 256 × 256 for the core2duo to remain
real-time (512 × 512 is 17fps) The GPUs are well above
realtime for all configurations. We should also note that the
GPUs are much less sensible to the increased algorithmic
complexity of the baseline Harris. A detailed view of the
real-time configurations is presented in table VII.

D. Results for the mobile case experiments

1) Execution Time: The i5 ULV processor performs
better than both GPU solutions in the two small resolu-
tions for Fast Harris, but the 520m performs better in the
larger resolution.The difference between the ULV processor
and 310m get smaller as the resolution increases. This is
probably because the GPUs get utilized better, as more
parallelism is exposed from the application. In the baseline
Harris version, the ULV still outperforms the GPUs in the
small resolution but loses the battle from both GPUs as the
resolution increases. This happens because of the increased
algorithmic complexity hidden in the GPU. With fast Harris
i5 is realtime up to 512 × 512 and with baseline Harris is
real time at 256× 256.The 310m is realtime at 512× 512.
Atom is real-time only at 256×256 even with the use of the
approximate algorithm. Finally the 520m is also real-time
at 512 × 512 but with 40fps. When running the baseline
Harris the CPUs are having a hard time staying above the
real-time baseline. The ULV is real time only at 256× 256.
Atom is not real-time at any resolution making the use of the
approximate algorithm mandatory for real-time applications.
In baseline Harris, both GPUs are real-time at 512×512 and
faster than the approximate algorithm for the reasons stated
in the introduction of the paper. A detailed view of the real-
time configuration for the mobile systems is presented in
Table VIII.

2) Energy efficiency: Both GPUs are far more energy
efficient that the ULV processor and Atom both in fast and
baseline Harris as shown in Figures 4(a) and 4(b). Atom has
the worst performance in the energy efficiency proving that it
is a processor targeted at providing low power consumption,
not performance under an energy budget.

E. Conclusions

As stated above GPUs are of great value to mobile world
because they allow us to perform complex algorithms in re-



(a) Baseline Harris

(b) Fast Harris
Figure 3. FPS results for the Mobile System

altime for resolutions that it wouldn’t be possible otherwise.
Also they are very good at providing performance with an
energy budget. It is worthwhile to mention that while the
mobile GPUs are as energy efficient as desktop GPUs, if not
less, they provide performance under a far more constrained
energy envelope.

IV. CONCLUSIONS

In this paper, we compared the merits of a high perfor-
mance and low complexity corner feature detector against
a number of different desktop and mobile platforms. We
implemented the detector for GPUs as well as CPUs and we
evaluated it’s performance against the baseline not approxi-
mate version of the Harris Feature Detector. Furthermore we
evaluated several optimizations for parts of the algorithm
on the GPU. Finally we evaluated the energy efficiency
of each processor architecture for Harris feature extraction.
According to our evaluation Harris feature extraction is a
good match for GPUs both in terms of performance and

(a) Baseline Harris

(b) Fast Harris
Figure 4. Energy efficiency for results for the Mobile System

energy efficiency. Mobile processors like Atom are unsuited
for heavy computation but ULV processors strike a good
balance between performance and energy efficiency and
remain real-time for relatively small resolutions. According
to our evaluation mobile platforms can benefit greatly from
adding a GPU for data-parallel workloads like Harris Corner
Detection. Comparing the approximate and the baseline
Harris detector we conclude that the fast detector is a
perfect match for CPU architecture but the baseline Harris
can perform better than fast Harris for small window sizes
because there is no need for auxiliary operation and the extra
computation cost is masked by the parallelism available.

As future work, we plan on evaluating the potential gains
of overlapping computation and data transfer as well as
multi-GPU support and also compare the qualitative differ-
ences between the baseline algorithm and the approximation.
During our tests both the ’fast’ and the ’slow’ version of
the detector yielded similar features in our sample video. In



our opinion there is no significant reason not to use the ’fast
version’ of the detector. This empirically validates the claims
of the original paper for the fast detector. As future work we
plan to quantify the two solutions in terms of repeatability
and other metrics, similar to [24].

ACKNOWLEDGMENT

This work was partially supported by the EU FP7-ICT-
2011-9-601165 project WEARHAP.

REFERENCES

[1] R. Kalarot and J. Morris, “Comparison of fpga and gpu
implementations of real-time stereo vision,” in Computer
Vision and Pattern Recognition Workshops (CVPRW), 2010
IEEE Computer Society Conference on. IEEE, 2010, pp.
9–15.

[2] J.-S. Kim, M. Hwangbo, and T. Kanade, “Realtime affine-
photometric klt feature tracker on gpu in cuda framework,” in
Computer Vision Workshops (ICCV Workshops), 2009 IEEE
12th International Conference on. IEEE, 2009, pp. 886–893.

[3] M. Schweitzer and H.-J. Wuensche, “Efficient keypoint
matching for robot vision using gpus,” in Computer Vision
Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on. IEEE, 2009, pp. 808–815.

[4] K. Ogawa, Y. Ito, and K. Nakano, “Efficient canny edge de-
tection using a gpu,” in Networking and Computing (ICNC),
2010 First International Conference on. IEEE, 2010, pp.
279–280.

[5] L. Mussi, F. Daolio, and S. Cagnoni, “Evaluation of parallel
particle swarm optimization algorithms within the cuda ar-
chitecture,” Information Sciences, vol. 181, no. 20, pp. 4642–
4657, 2011.

[6] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, “Con-
nected component labeling on a 2d grid using cuda,” Journal
of Parallel and Distributed Computing, vol. 71, no. 4, pp.
615–620, 2011.

[7] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Real-
time computer vision with opencv,” Communications of the
ACM, vol. 55, no. 6, pp. 61–69, 2012.

[8] K.-T. Cheng and Y.-C. Wang, “Using mobile gpu for general-
purpose computing–a case study of face recognition on smart-
phones,” in VLSI Design, Automation and Test (VLSI-DAT),
2011 International Symposium on. IEEE, 2011, pp. 1–4.

[9] N. Singhal, I. K. Park, and S. Cho, “Implementation and op-
timization of image processing algorithms on handheld gpu,”
in Image Processing (ICIP), 2010 17th IEEE International
Conference on. IEEE, 2010, pp. 4481–4484.

[10] Y.-C. Wang, B. Donyanavard, and K.-T. T. Cheng, “Energy-
aware real-time face recognition system on mobile cpu-gpu
platform,” Trends and Topics in Computer Vision, pp. 411–
422, 2012.

[11] C.-H. Chou, P. Liu, T. Wu, Y. Chien, and Y. Zhao, “Implemen-
tation of parallel computing fast algorithm on mobile gpu,”
Unifying Electrical Engineering and Electronics Engineering,
pp. 1275–1281, 2014.

[12] U. Khan, M. Quaritsch, and B. Rinner, “Design of a hetero-
geneous, energy-aware, stereo-vision based sensing platform
for traffic surveillance,” in Intelligent Solutions in Embedded
Systems (WISES), 2011 Proceedings of the Ninth Workshop
on. IEEE, 2011, pp. 47–52.

[13] B. Rister, G. Wang, M. Wu, and J. R. Cavallaro, “A fast and
efficient sift detector using the mobile gpu,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on. IEEE, 2013, pp. 2674–2678.

[14] C. Harris and M. Stephens, “A combined corner and edge
detector.” in Alvey vision conference, vol. 15. Manchester,
UK, 1988, p. 50.

[15] P. Mainali, Q. Yang, G. Lafruit, R. Lauwereins, and L. Gool,
“Lococo: Low complexity corner detector,” in Acoustics
Speech and Signal Processing (ICASSP), 2010 IEEE Inter-
national Conference on. IEEE, 2010, pp. 810–813.

[16] G. Bradski and A. Kaehler, Learning OpenCV: Computer
vision with the OpenCV library. O’Reilly Media, Inc., 2008.

[17] F. C. Crow, “Summed-area tables for texture mapping,” in
ACM SIGGRAPH Computer Graphics, vol. 18, no. 3. ACM,
1984, pp. 207–212.

[18] P. Rondao Alface, “Low complexity corner detector using
cuda for multimedia applications,” in MMEDIA 2011, The
Third International Conferences on Advances in Multimedia,
2011, pp. 7–11.

[19] B. Bilgic, B. K. Horn, and I. Masaki, “Efficient integral image
computation on the gpu,” in Intelligent Vehicles Symposium
(IV), 2010 IEEE. IEEE, 2010, pp. 528–533.

[20] D. Nehab, A. Maximo, R. S. Lima, and H. Hoppe, “Gpu-
efficient recursive filtering and summed-area tables,” ACM
Transactions on Graphics (TOG), vol. 30, no. 6, p. 176, 2011.

[21] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson,
“Cudpp: Cuda data parallel primitives library,” 2007.

[22] D. Merrill. Cub cuda libary. [Online]. Available:
http://nvlabs.github.io/cub/

[23] N. Bell and J. Hoberock, “Thrust: A productivity-oriented
library for cuda,” GPU Computing Gems, vol. 7, 2011.

[24] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of
interest point detectors,” International Journal of computer
vision, vol. 37, no. 2, pp. 151–172, 2000.


