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Abstract Markerless 3D tracking of hands in action or in interaction with objects
provides rich information that can be used to interpret a number of human activities.
In this paper, we review a number of relevant methods we have proposed. All of
them focus on hands, objects and their interaction and follow a generative approach.
The major strength of such an approach is the straightforward fashion in which
arbitrarily complex priors can be easily incorporated towards solving the tracking
problem and their capability to generalize to greater and/or different domains. The
proposed generative approach is implemented in a single, unified computational
framework.

Keywords 3D hand tracking · 3D tracking of hand-object interactions · Model-
based 3D tracking

1 Introduction

Thiswork discusses the problemof observing and understanding human (inter)action
through markerless observations, i.e. in a non noninvasive manner. Human action is
considered with focus on human hands. Understanding human hands in action is
a theoretically and practically interesting problem. Humans are readily capable of
understanding hand actions of their own and of other humans. Interestingly, the idea
supported in the literature is that to achieve such understanding, humans employ
mental simulation [6, 7], which could tentatively be corresponded to the generative
approach in computer vision. On the practical side, achieving the understanding

N. Kyriazis · I. Oikonomidis · P. Panteleris · D. Michel · A. Qammaz
A. Makris · K. Tzevanidis · P. Douvantzis · K. Roditakis · A. Argyros (B)
Institute of Computer Science, Foundation for Research and Technology, Heraklion, Greece
e-mail: argyros@ics.forth.gr

N. Kyriazis · I. Oikonomidis · K. Tzevanidis · P. Douvantzis · K. Roditakis · A. Argyros
Computer Science Department, University of Crete, Heraklion, Greece

© Springer International Publishing Switzerland 2016
A. Gruca et al. (eds.), Man–Machine Interactions 4, Advances in Intelligent
Systems and Computing 391, DOI 10.1007/978-3-319-23437-3_2

19



20 N. Kyriazis et al.

of human hand action sets the foundation upon which a variety of socially helpful
applications can be established, in the fields of safety, medicine, education, industry,
entertainment, etc. Substituting occasionally flawed visual scrutiny by humans for
systematically robustmechanised processing of images canhave a significant positive
impact on the success of the underlying tasks.

As demonstrated in our work, rich understanding of hand action and interaction
with objects can be successfully built upon robust and detailed 3D tracking of hands
and objects, from images captured by noninvasive camera setups. However, the 3D
tracking task is not an easy one. The structural complexity of the human hand corre-
sponds to multiple Degrees of Freedom (DoFs) which yield a tracking problem with
a difficult to explore high-dimensional search space. Highly frequent and temporally
prolonged self-occlusions lead to insufficient observations for full and proper estima-
tion of hand articulation. The uniformity of finger appearance introduces ambiguities
in observation, where e.g. one finger can be mistaken for another. It is common that
human hands occupy little area in captured images and therefore correspond to obser-
vations of low spatial resolution. On top of that, hands may move quite fast, resulting
in a relatively low temporal resolution, too, even if observed by cameras operating
in 30 fps. Adding more hands and/or objects in 3D tracking only aggravates the
aforementioned problems and also increases computational complexity.

2 The Proposed Generative Approach

Wepresent our generative approach in problems pertaining to 3D tracking of hands in
isolation Sect. 2.1 and hands in interaction with objects Sect. 2.2. A unified approach
[11] is employed in all of the presented work.

The presentedwork is foundedon the premise that there exists a simulation process
which can synthesize data similar to acquired observations. The configuration of the
simulation that best matches some observations is the “explanation” or understand-
ing of the observations. Simulations involve synthesizing appearance, through 3D
rendering, and even behaviour, if physics-based simulation is employed.

Assuming temporal continuity, tracking objects in 3D amounts to searching for the
3D configuration of the objects whose simulation best matches actual observations.
Searching is performed in the vicinity of the tracking result for the previous frame.
For each tracking frame the simulation error E is minimized:

E (x, o, h) = ‖M (x, h) − P (o)‖ + λL (x, h) , (1)

where x is the state of all tracked objects, o are the observations of the current
frame, h is the tracking history, M is the simulation function, P is the pre-processing
function which maps observation to the same feature space as M and L is a prior on
the 3D configuration of objects. The first term is a notational abstraction of a data
term, i.e. a quantification of the discrepancy between a given hypothesis and actual
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Fig. 1 The outline of the implementation for the generative 3D tracking framework. For more
details the reader is referred to [11]

measurements. The prior term and data term are balanced with a weight λ that is
empirically defined.

The tracking solution s for the current frame amounts to minimizing (1):

s
Δ= argmin

x
E (x, o, h) . (2)

During search for the optimal x , (1) is invoked several times. To favor speed, par-
allel search techniques are incorporated and the implementation of (1) exploits GPU
acceleration. An outline of the implementation of the generic approach is depicted
in Fig. 1.

2.1 Tracking Hands in Isolation

There is significant interest in pursuing fast and robust 3D tracking of a single hand.
However, as already discussed, tracking a single hand in 3D is already a formidable
challenge. We hereby present a series of successful 3D single hand tracking efforts.
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Relevant Work The problem of 3D hand tracking has received significant attention.
There exist several approaches to solving the problem, with every one including a
top-down component and a bottom-up component. According to the contribution
weight of each component, approaches can be characterized as top-down (dom-
inating top-down component), bottom-up (dominating bottom-up component) and
hybrid (equally contributing top-down and bottom-up components). Top-downmeth-
odswork by establishing amodel of the hand and fitting it tomoderately preprocessed
observations, through search [3, 14, 29, 31, 35, 38, 42, 43, 48]. The methods
presented in this paper call within this category too. Bottom-up methods work by
learning, via machine learning tools, the mapping from the image space to the con-
figuration space, from large training corpora [1, 4, 8, 9, 16, 34, 36, 44, 46]. Hybrid
methods work by fusing top-downmodels with strong bottom-up features, which are
a product of learning [30, 40, 41, 49].

Contribution We have investigated the 3D tracking problem for a hand in isolation
and under different cases of camera setups, representations and optimization tools
[5, 15, 20–22, 24].

With respect to camera setups we have explored two options, namely a set of
calibratedRGBcameras and a singleRGBDcamera (MSKinect,ASUSXtion).What
is differentiated between the two classes is the feature space used while computing
(1). For the case of multiple RGB cameras we have employed per camera 2D features
(silhouettes, edges) which are fused in 3D information as a result of incorporation
in an objective function (see 1) defined over 3D configuration [24]. We have also
employed 3D features (visual hulls) which, conversely, where computed as a fusion
of multiple 2D cues prior to their incorporation in the computations of the objective
function [21]. The latter [21] presents favorable traits for the small baseline stereo
(2 cameras) case and is otherwise similar to the former [24]. For the RGBD case we
have employed both 2D (silhouettes) and 3D (depth) features in (1) [5, 15, 20, 22].
The benefit of employing a single RGBD camera instead of multiple RGB cameras
is the significant decrease of data which require processing while maintaining the
required 3D information. This allows for 3D tracking of a single hand which can
currently be performed at a rate of 30 fps.

The default representation of a hand in all presented work has been a kinematics
tree (skeleton) of 27 parameters, redundantly encoding 26 DoFs. However, it is
noticed that hand motion is often modulated by an underlying task. We investigated
whether by conditioning on tasks, hand motion could be described with a reduced
amount of parameters. In [5] we came up with per-task sub-spaces of hand motion,
which we successfully employed in 3D hand tracking.

Last but not least, we have employed different optimization schemes for comput-
ing (2). In most of the hand tracking work [5, 20, 21, 24] (2) was computed using
a variant (see [20] for details) of the Particle Swarm Optimization algorithm [28].
Introducing a custom evolutionary technique for search [22] and replacing PSO with
it dramatically decreased the amount of required invocations to (1) for computing
(2), with respect to [20], while preserving the accuracy level. By substituting the find-
best optimization schemes of [20, 22] with a probability density propagation scheme,
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(a)

(c)

(b)

Fig. 2 Exemplar results of 3D tracking of a single hand from a multiple 2D cues [24], b a single
RGBD camera [20] and c convex hulls computed from multiple views [20]

namely Hierarchical Particle Filtering [15], not only 3D hand tracking became even
faster (90 fps) but it also became more robust, due to the persistence of several
hypotheses across frames, instead of a single one as in [5, 20, 22, 24]. Indicative
results of the 3D hand tracking methods are provided in Fig. 2. For more details the
reader is referred to the corresponding papers.

2.2 Tracking Interacting Hands

In a significant subset of the scenarios which involve observation of a human, hands
are not isolated. They are usually found interacting with other hands or with objects
in the surrounding of the subject. The amount of objects manipulated over time can
vary from one (explore or use a single object) to many (preparing multi-ingredient
food). Tracking such scenes in 3D inherits the list of single hand tracking problems,
in aggravated forms, accentuated by the cardinality of the scenes.

Relevant Work There exist some approaches in the literature to handle 3D tracking
of hand-object interactions, that can be corresponded to the categorization of top-
down [47], bottom-up [33] and hybrid [2] methods. However, they all regard a single
object. On the other hand, there exist approaches that tackle the problem of tracking
multiple objects in 3D, but do not include a hand [10, 37, 45].

Contribution We have performed work which spans across several choices over
setups, representations, etc. Even more importantly, the corresponding methods also
regard different scene scales. We will present the corresponding methods focusing
on the axis of scene scale and denoting important points on the way.
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The multi-camera 3D hand tracking method of [24] has been extended in [19]
to also include an object of known parametric shape. The extension amounted to
introducing the DoFs of the object and its 3D shape in the computations of (1) and
(2). Thus, both the hand and the object where tracked, by requiring a computational
budget which was a bit larger than that used in [24]. In [23] we showed that this
extension can successfully scale up to the case of the object being as complex as
another hand, increasing the DoFs to 54 (27 for each hand) and also increasing the
computational budget. In both cases, the state of the hand and the other hand or
object were considered jointly, as required in order to model constraints such as, for
example, that two physical objects cannot occupy the same physical space. PSO was
used in both cases and succeeded, given enough computational budget.

However, generalizing to larger scenes is problematic, as the total DoFs dramat-
ically increase. Because of lack of gradient or any other type of focus, PSO cannot
effectively explore arbitrarily large search spaces with limited resources. To intro-
duce a sense of focus, the joint problem of tracking many objects and/or hands in
3D was carefully decomposed to several semi-independent tracking problems, one
for each entity [13]. Instead of a single tracker for the entire scene, an Ensemble of
Collaborative Trackers is incorporated. Each of these trackers treats the last known
state of all others as static and thus becomes independent of them, while at the same
time it incorporates their state in its computations. This allows to simultaneously
decompose the problem but also preserve reasoning over the entire state in each
tracker. The decomposition, along with the parallel implementation (CPU and GPU)
yield sub-linear increase in computational time as the number of objects increases
and significantly outperforms schemes such as the joint optimization of [19, 23] and
truly independent trackers (e.g. multiple instances of [20]).

The ECT method in [13] was also endowed with a hand-object manipulation
prior which allowed for even computing forces from vision alone [27]. When a
hand and an object are tracked by an ECT, erroneous measurements or optimization
hiccups can lead to physically implausible manipulation estimations. By tracking
the acceleration of the manipulated object and consulting a per finger force prior
(learned through training) the hand-object estimation can be rectified so as to become
physically plausible. At the same time, the actual forces exerted by the subject are
also computed.

The notion of physical plausibility has also been exploited in [12] to enable scal-
able tracking of a scene comprising a hand and several objects. The observation that
objects move only due to the motion of the hand leads to the formulation of a hand-
objects tracking problem whose DoFs are the same as the hand’s alone. Otherwise
stated, the amount of passive objects makes no difference in the size of the search
space, since in order to track any subset of moving objects it suffices to only search
for a hand motion whose physical consequences would have the objects move. Some
results of the 3D hand-object(s) tracking methods can be viewed at Fig. 3. For more
details the reader is referred to the corresponding papers.



A Generative Approach to Tracking Hands and Their Interaction with Objects 25
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(c)

(d)

Fig. 3 Exemplar results of 3D tracking of hands and objects in interaction: a hand-object interaction
observed from a multi-camera system [18], b two strongly interacting hands observed from an
RGBD camera [23], c a hand interacting with a few objects observed from an RGBD camera [12]
and d two hands interacting with many objects observed from an RGBD camera [13]

3 Discussion

We presented a series of methods to solving the problem of tracking hands in action
or in interaction with objects, in 3D. All the works followed the generative approach,
as implemented in a single unified and modular architecture [11]. The generative
approach has successfully led to tackling the 3D tracking problems and establishing
state-of-the-art solutions. At the same time, the generative approach, as opposed
to discriminative or hybrid approaches, has straightforward means to facilitate
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generalization to larger and/or different domains. As an example, the same approach
used in the presented work has also been successfully employed in problems of
tracking hands with markers [32], tracking head motion [25] and tracking the full
body [17]. The results of the presented 3D hand-object tracking methods have also
been employed to fuel even higher-level inference. Specifically, reconstructed and
detailed 3D trajectories of hands manipulating objects have been used to establish a
high-level action grammar for everyday tasks [26] and also to enable the inference
of the manipulation intent a subject has while approaching an object, even before
manipulation is actually observed [39].
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