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Our goal is to represent a given 2D shape with an automatically determined number of ellipses, so that
the total area covered by the ellipses is equal to the area of the original shape without any assumption or
prior knowledge about the object structure. To solve this interesting theoretical problem, first we employ
the skeleton of the 2D shape which provides important information on the parameters of the ellipses
that could approximate the original shape. For a given number of such ellipses, the hard Expectation-
Maximisation (EM) algorithm is employed to maximise the shape coverage under the Equal Area con-
straint. Different models (i.e., solutions involving different numbers of ellipses) are evaluated based on
the Akaike Information Criterion (AIC). This considers a novel, entropy-based shape complexity measure
that balances the model complexity and the model approximation error. In order to minimise the AIC
criterion, two variants are proposed and evaluated: (a) the augmentative method that gradually increases
the number of considered ellipses starting from a single one and (b) the decremental method that
decreases the number of ellipses starting from a large, automatically defined set. The obtained quanti-
tative results on more than 4000 2D shapes included in standard as well as in custom datasets, quantify
the performance of the proposed methods and illustrate that their solutions agree with human intuition.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Object modelling and representation through a sufficient
number of geometric primitives (prototypes) is a key problem in
computer vision and pattern recognition with several applications
including object detection and retrieval [1,2], tracking [3], motion
analysis and action recognition [4,5]. The selection of the type of
prototypes is application dependent. For example, when curves
are modelled, straight line segments are usually preferred due to
their simplicity. In grey scale or colour images, segmentation
methods [6–9], mixtures of simpler models such as rigid templates
and bag-of-features or deformable part models such as pictorial
structures have been used for object representation and detection
[2,10]. Ellipsoids and superquadrics [11,12] have been considered
as volumetric primitives for 3D shape representation, since they
are convenient part-level models that can further be deformed
together to model articulated objects.

In the case of region modelling, a 2D binary image is given with
foreground points representing the shape to be modelled. This
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image can be the result of any object detection or image seg-
mentation method (e.g., [6,9]). The goal is then to estimate the
parameters of k-prototypes that approximate the foreground
shape according to some predefined optimality criterion. Ellipses
are convenient such prototypes, since their parameters convey
information including the location, orientation and variation of
data [1]. Depending on the selection of the optimality criterion,
two problem formulations can be identified:

� The problem of Maximum Coverage (MAX-α), where the goal is
to maximise the coverage α of foreground points given a fixed
number of ellipses k.

� The problem of Minimum Number of Ellipses (MIN-k), where
the goal is to find the minimum number k of ellipses that
achieve a certain coverage α.

Both formulations are defined under the Equal Area constraint
which states that the sum of the areas of all ellipses should be
equal to the area of the given shape.

Analogous problem formulations exist in the case of approx-
imating curves with straight line segments. In that context, the
aforementioned problems are optimally solved in polynomial time
by graph-theoretical and dynamic programming methods [13]. For
the case of approximating 2D shapes by ellipses, both formulations
exhibit a high computational complexity. For the MAX-α for-
mulation, the number k of ellipses needs to be known. Their
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parameters may be estimated by a hard Expectation Maximisation
(EM) algorithm which, nevertheless, is not guaranteed to converge
to an optimal solution. For the MIN-k formulation, optimality is
not guaranteed again. Additionally, the parameter α needs to be
decided a priori, based on some heuristic and/or application
dependent manner. Additionally, large values of α result in a large
number of ellipses that, also due to discretisation effects, model
the shape with unnecessary detail.

We are interested in a parameter-free method that auto-
matically computes a sufficient number of ellipses that achieve a
good balance between model complexity and shape coverage
under the Equal Area constraint. This theoretically interest com-
puter vision problem has compact and easy-to-grasp description
but a very high algorithmic complexity due to the large search
space and to the unspecified number of the ellipses. Even if just
one ellipse is used, there does not exist any trivial method to
compute the optimal solution for MAX-α.

In this work, we define a new shape complexity measure,
which is combined with AIC [14] to automatically approximate a
2D shape by a collection of ellipses without a priori knowledge or
specification of k and α. To the best of our knowledge, we propose
the first parameter-free method that automatically estimates an
unknown number of ellipses that achieve a good balance between
model complexity and shape coverage. Although not necessarily
optimal, the resulting methodology suggests solutions that out-
perform existing methods in quantitative terms and also agree
with human intuition.

As an example, Fig. 1 illustrates the solutions of our approach
for two different human figures. In the left figure, five ellipses
cover 92.5% of the shape, while in the left, twelve ellipses cover
91.5% of it. An increase of the number of ellipses will increase
shape coverage, at the cost of an increase in modelling complexity
that is incompatible to the complexity of the given shapes. Both
solutions agree with human intuition. In both cases, the number of
ellipses and their parameters are automatically determined by the
proposed method.
2. Related work

Several methods have been proposed for deciding how a 2D
shape can be represented as a set of ellipses. They can be classified
into (a) boundary based methods that minimise the approxima-
tion error between the boundaries of ellipses and the scattered
data points and (b) region based methods that minimise the
approximation error between the regions of ellipses and the
given shape.

The fitting of a single elliptic curve to a given set of 2D points is
a well-studied problem. A robust method for direct least square
fitting of a single ellipse that solves a generalised eigensystem has
been proposed in [15]. The approaches for detecting ellipses that
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Fig. 1. Example outputs of the proposed m
fit on edge pixels (data points) in an image can be grouped into
those that employ (a) the Hough Transform, (b) Genetic Algo-
rithms and (c) edge-following [16]. In order to detect ellipses
effectively and quickly using Hough Transform, many variations
have been suggested that overcome the algorithmic time and
space complexity of the original Hough Transform formulation. For
example, the use of a subset of the data points [17] and the
decomposition of the five-dimensional parameter space into sev-
eral sub-spaces of lower dimensions [18] accelerates the process.
The Genetic Algorithm-based methods solve the problem by
finding a suboptimal solution to an optimisation problem [19].
Finally, the edge-following algorithms consist of two main steps.
First, they compute the chained edge points from the original edge
image and then they perform grouping of these short segments
and fitting to a set of ellipses [16].

Most of the aforementioned methods work well when the
ellipses are partially occluded, but cannot be used to fit a set of
ellipses in a region. Region based methods do not restrict them-
selves to the boundaries of shapes but rather take into account all
shape points. Thus, they are more tolerant to noise. For a single
ellipse, its parameters can be analytically determined based on its
second order moments [4]. For more than one ellipses, the fitting
problem is not as trivial. Several methods provide approximate
solutions. There exists methods where the number of prototypes is
given [20]. Other methods assume that aspects of the model
structure is known a priori [21]. However, the problem of auto-
matically determining the model structure is still an open one [21].

In [22], the head and the body parts of a human figure are
identified as two ellipses. The K-means algorithm is used to
minimise the fitting error between the figure points and the two
ellipses. Then, individual ellipses are fit to each cluster using the
direct least square fitting method [15]. The clusters are recalcu-
lated and the process is repeated until convergence. In [20], a
method based on image moments and the bsp-tree data structure
for structuring and tracking of objects in video sequences has been
proposed. That algorithm uses image moments to build a hier-
archical structure which approximates the object by a set of
ellipses at different levels. The main limitation of this method is
that the number of the ellipses should be a power of two. When
the given object is represented using a tree structure with known
connections and possible locations for each part are also given,
then the best match of the model to an image can be nearly
optimal and can be estimated in linear time [23].

The method proposed in [21] has some similarities to our work.
In that work, a Gaussian Mixture Model (GMM) is estimated using
the classical Expectation-Maximisation (EM) algorithm to estimate
the ellipse decomposition of a silhouette image. However, this
method assumes a known number of ellipses which are addi-
tionally organised in a known hierarchical tree structure. These
two constraints greatly simplify the optimisation problem because
they permit the optimisation of a subset of ellipses at a time as
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opposed to the optimisation of the full set of parameters of all
ellipses whose number is unknown.

In contrast to the existing approaches, in this work the model
structure as well as the number of ellipses is considered unknown.
These are automatically computed as the method evolves based on
a new entropy based shape complexity measure that balances
model complexity and the fitting error between the model and the
data. We propose two different search and optimisation strategies.
The first one is called Augmentative Ellipse Fitting Algorithm
(AEFA) and the second Decremental Ellipse Fitting Algorithm
(DEFA). AEFA gradually increases the number of ellipses starting
from a single one, while DEFA decreases the number of ellipses
starting with a large (though automatically determined) number
of ellipses.

In the literature, a lot of efforts target the definition of a proper
measure of the complexity of a 2D shape. Such a measure is
important to several applications in computer vision as well as in
developing efficient shape classification algorithms [24,25]. In
[24], shape complexity H(p) is computed as the entropy to the
histogram of curvature:

HðpÞ ¼ �
X
i

pi log pi: ð1Þ

According to this definition, the more symmetrical curves have
lower shape complexity. This definition is scale, rotation and
translation invariant. A disadvantage is that the local variation of
curvature is ignored, since the global histogram of curvature is
used. In [25], the shape complexity is computed by a weighted
sum of three criteria: (a) entropy of the global distance distribu-
tion, (b) entropy of local angle distribution, and (c) shape ran-
domness. Shape complexities vary in the range ½0‥2�. A drawback
of this method is that the relative importance of the three criteria
has to be determined by the user who has to set an appropriate
weighting scheme. In contrast, in this work, we propose a new
shape complexity measure that is efficiently combined with AIC
[14] to aid towards the solution of the model selection problem in
a parameter-free manner.

Besides its theoretical interest, the proposed methodology has
interesting applications, e.g., to the problem of recovering auto-
matically the unknown kinematic structure of an unmodelled
articulated object based on a given set of views. This also explains
why it is important not to pre-specify the number of primitives
and why [21] does not fit our goals.

In summary, the major contributions of our work are the
following:

� We propose a parameter-free method that approximates a given
2D shape with a number of ellipses, so that the total area
covered by the ellipses is equal to the area of the original shape
(Equal Area constraint).

� The proposed methodology automatically computes the num-
ber and the parameters of the ellipses that achieve a good
balance between model complexity and shape coverage under
the Equal Area constraint. No prior knowledge of the shape is
required.

� Our approach capitalises on a novel definition of shape com-
plexity that exploits the skeleton of a shape. In combination
with the AIC, shape complexity defines an information-
theoretic criterion for model selection that balances model
complexity and the shape coverage error.

The rest of the paper is organised as follows. Section 3 sets the
scene by formulating the problem. Sections 4 and 5 present the
proposed shape complexity measure and the model selection
problem, respectively. Two ellipse fitting variants are proposed
(Sections 6 and 7) and their computational complexity is
investigated in Section 8. The experimental results are provided in
Section 9. Finally, Section 10 summarises our work by providing
the main conclusions of our study.
3. Problem formulation

We assume a binary image I that represents a 2D shape. A pixel
p of I belongs either to the foreground FG ðIðpÞ ¼ 1Þ or to the
background BG ðIðpÞ ¼ 0Þ. The area A of the 2D shape is given by

A¼
X
pA FG

IðpÞ: ð2Þ

We also assume a set E of k ellipses Ei, each with individual area
jEi j . The binary image UE is also defined so that UEðpÞ ¼ 1 at points
p that are inside any of the ellipses Ei and UEðpÞ ¼ 0, otherwise.
Then, we define the coverage αðEÞ of the 2D shape by the given set
of ellipses E as:

αðEÞ ¼ 1
A

X
pA FG

IðpÞUEðpÞ: ð3Þ

Essentially, αðEÞ is the percentage of the 2D shape points that are
under some of the ellipses in E.

Let jEj denote the sum of the areas of all ellipses
jEj ¼ Pk

i ¼ 1 jEi j . As reported in Section 1, the problem of Max-
imum Coverage (MAX-α) amounts to computing the parameters of
a set En of k ellipses Ei (k is fixed), so that αðEnÞ as defined in Eq. (3)
is maximised, under the constraint that the sum of the areas of all
ellipses is equal to the area of the 2D shape (Equal Area
constraint).

Formally,

En ¼ arg maxE αðEÞ; s:t: jEj ¼ A: ð4Þ
The problem of Minimum Number of Ellipses (MIN-k) amounts to
computing the parameters of the minimum number k of ellipses Ei,
so that the coverage αðEnÞ is greater than or equal to a given
threshold τ under the Equal Area constraint ðjEj ¼ AÞ. Both MAX-α
and MIN-k formulations define a fixed parameter (k or τ, respec-
tively). In this work, we define a new, parameter-free version of
the problem. The goal is now to compute the parameters of an
automatically defined number k of ellipses Ei, so that the trade-off
between shape coverage αðEÞ and model complexity is optimised.
Intuitively, if a 2D shape is “simple”, increasing the number of
ellipses towards increasing the coverage, should be more pena-
lised than the case of a complex shape. Section 4 defines shape
complexity and Section 5 presents how this is used to drive the
model selection process.
4. Shape complexity

We define a new shape complexity measure based on the
skeleton S of the shape to be modelled. The skeleton or medial axis
is the set of the centroids of circles that are tangent to shape
boundary in at least two points, where all such circles are con-
tained in the shape [26]. The medial axis together with the values
of the radii of the maximally inscribed circles is called the Medial
Axis Transform (MAT). MAT is a compact and lossless repre-
sentation of the shape, as it can be used to reconstruct the original
shape. As such, it can be used to assess shape similarity and assist
in object recognition and retrieval, outperforming, in may cases,
other shape descriptors in the presence of partial occlusion and
articulation of parts [27]. Fig. 2 (left) illustrates the MAT repre-
sentation. The colouring of the skeleton points denotes the radius
of the maximal inscribed circle at that point.
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Fig. 2. The medial axis ((a) and (c)) and the result of thinning ((b) and (d)) of two shapes. (For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)

C. Panagiotakis, A. Argyros / Pattern Recognition 53 (2016) 259–275262
Let G¼ ðV ;WÞ be the graph comprising a set V of nodes toge-
ther with a set W of edges, where V are the branching nodes and
the end points of a skeleton. The edges W naturally segment the
skeleton into parts liAS; iAf1;…; jW j g, where jW j denotes the
number of edges. For each of these segments, the 16-bin histogram
of the radii of the circles is computed. Shape complexity is then
defined as a function of the entropy of these MAT-based histo-
grams. More specifically, the proposed shape complexity C is
defined as

C ¼ �
XjW j

i ¼ 1

X16

j ¼ 1

pij log pijþ log jSj ; ð5Þ

where pij is the j bin of the i-th histogram. The term log jSj
represents global information of the skeleton as it is an upper
bound of the entropy of the radii histogram computed over the
whole skeleton. Since we employ 16-bin histograms, C is bounded
by 4jW j þ log jSj ¼ Oðlog AÞ.

Shape complexity as previously defined is translation and
rotation invariant, while it slightly increases with scale due to the
log j Sj term. However, minor boundary deformations may create
several branches on the extracted skeleton, thus affecting shape
complexity. To alleviate this problem, instead of the medial axis,
we employ the skeleton resulting out of shape thinning [28], since
it provides a more compact representation keeping the most
important skeleton branches. Additionally, prior to that, we
employ a closing morphological filter [29] to the input shape
image. Another option would be to keep the most important
skeleton branches of MAT by applying some skeleton pruning
method [30]. We refrain from doing this, as skeleton pruning
algorithms are associated with a predefined threshold that con-
trols the level of pruning. It should be noted that while model
selection is based on the adopted shape complexity measure, the
proposed method could, in principle, accommodate any other
definition.

It has to be noted that the proposed shape complexity measure
is well defined also for shapes with holes. Fig. 2 illustrates two
examples of the medial axis ((a) and (c)) and the result of thinning
((b) and (d)) of a shape without holes ((a) and (b)) and a shape
with holes ((c) and (d)). In the first example ((a) and (b)), for the
medial axis, G¼ ðV ;WÞ consists of 12 nodes and 11 segments and
results in a shape complexity of 31.43. The skeleton resulting from
thinning corresponds to a graph consisting of 4 nodes and 3 seg-
ments and a shape complexity of 16.74. In the second example
((c) and (d)), for the medial axis, G¼ ðV ;WÞ consists of 18 nodes
and 21 segments and results in a shape complexity of 33.18. The
skeleton resulting from thinning corresponds to a graph consisting
of 8 nodes and 12 segments and a shape complexity of 19.94.
5. Model selection

In order to solve the parameter-free ellipse estimation problem,
we employ the Akaike Information Criterion (AIC) [14] on the
defined shape complexity measure (Eq. (5)), as a means to auto-
matically compute the suitable ellipse set. AIC is preferred since it
is one of the most popular information-theoretic criteria for model
selection dealing well with the trade-off between the accuracy of
model fitting and modelling complexity. However, the proposed
methodology can be easily modified to accommodate any other
criterion like BIC, AICc, etc.

Given a statistical model of k parameters, the AIC is given by
AIC ¼ 2k�2 lnðLÞ, where L is the maximised value of the likelihood
function for the model. AIC is also connected with the mean
squared prediction error (MSE) of the model by N lnðMSEÞþ2kþϱ,
where N denotes the sample size (in lossless representation) and ϱ
is a constant independent of the model used, therefore it can be
ignored [31]. According to our problem formulation, the fitting
performance αðEÞ ¼ 1�MSE. We also propose to use the defined
shape complexity C as an estimation of the size of a lossless
representation of the shape. Therefore, the AIC-based model
selection criterion in this work amounts to the minimisation of the
quantity

AICðE;CÞ ¼ C lnð1�αðEÞÞþ2k: ð6Þ

It should be noted that the above quantity is invariant to shape
rotation and translation. Scale changes slightly affect the model
selection process.
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Another frequently used criterion for model selection is the
Bayesian Information Criterion (BIC) [32] that is given by
BIC ¼ 2k�2 lnðLÞ. However, BIC penalises model complexity more
heavily yielding under-fitting. In our approach, AIC is preferred
also because of its theoretical and performance advantages over
BIC [31,33]. In the experiments we performed, both criteria have
been tested, resulting in similar results for most of the cases.
6. Augmentative Ellipse Fitting Algorithm

The proposed Augmentative Ellipse Fitting Algorithm (AEFA)
gradually increases the number of considered ellipses, starting from a
single one. The input to AEFA is the binary image I representing the
shape to be modelled by ellipses. Its goal is to compute a set of
ellipses En with the lowest AIC ðAICnÞ, as this is defined in Eq. (6). The
main steps of the AEFA algorithm are summarised in Algorithm 1.

Algorithm 1. Augmentative Ellipse Fitting (AEFA).
input: Binary image I.
output: Set of ellipses En with the lowest AICn

1 ½S;R� ¼ ComputeShapeSkeletonðIÞ
2 C ¼ ComputeShapeComplexityðS;RÞ
3 CC ¼ InitializeEllipseHypothesesðS;RÞ
4 k¼1
5 AICn ¼1
6 repeat
7 SCC ¼ SelectHypothesesðk;CCÞ
8 E¼ GMM�EMðI; SCC; kÞ
9 AIC ¼ ComputeAICðI; E;CÞ
10 AICmin ¼ C � log ð1�0:99Þþ2 � k
11 if AICoAICn then
12 AICn ¼ AIC
13 En ¼ E
14 end
15 k¼ kþ1
updated (lines 11–14

of the current best

ellipses k exceeds

more detail the al
6.1. Initialising elli
CC holds a set

circles whose cent

defined by the cor

considered for inc

their radius. Initia

circle of centroid K

it is overlapping w

not the case, then

size of CC and the

with radius lower

Thus, the initial e
whose centroids li

determined by the
2 We assume that αðEÞo0:99, since the ellipse prototype cannot exactly fit on
the image grid. In order to speed up the method even lower values can be used.

3 Partially overlapping is allowed only if the centroids lie on the end points of
shape skeleton S.
16 until AICnoAICmin Jk4 jCC j

Initially, the thinning skeleton points S of the 2D shape together
with their associated radii R are computed (line 1). Then, the shape
complexity C is computed as defined in Eq. (5) (line 2). The ske-
leton points are stored in S in descending order of R, that is
Rð1ÞZRð2ÞZ⋯ZRðjSj Þ. In line 3, based on S and R, we compute a
set of candidate circles CC that will constitute initial hypotheses of
ellipses representing the 2D shape. The cardinality jCC j of CC
provides an upper bound on the number of ellipses that will
eventually be used to model the 2D shape. The details of this
algorithmic step are presented in Section 6.1.

Then, the following loop is executed (lines 6–16). In the k-
iteration of the loop, first (line 7), k circles are selected from CC and
stored in SCC (Section 6.3). These k circles initialise a hard
Expectation-Maximisation algorithm (line 8) that is responsible
for estimating the parameters of k ellipses that best (in the MAX-α
problem formulation sense) represent the given 2D shape (Section
6.2). The AIC of the achieved solution is then computed based on
Eq. (6). Also, AICmin is computed (line 10) as a lower bound of the
achievable AIC given the model cardinality k and the shape com-
plexity C. The best fit ellipses set ðEnÞ and the lowest AIC ðAICnÞ are

). The whole process terminates when the AIC
fit ellipses is already very low2 or the number of
jCC j (line 16). The following sections describe in
gorithmic steps of AEFA.

pse hypotheses

of non-overlapping or partially overlapping3

roids lie on the shape skeleton S. Their radii is
responding radii R of skeleton points. Circles are
lusion in CC in decreasing order with respect to
lly, CC ¼∅. Then, in each iteration step i, the
(i) and radius R(i) is checked regarding whether
ith any of the already selected circles. If this is
this circle is added to CC. In order to reduce the
complexity of the next steps of AEFA, circles
than 3% of the maximum radius are ignored.
llipse hypotheses are non-overlapping circles
es on the skeleton of the 2D shape and radii are
distance of these centroids from the shape. This



Fig. 4. (a)–(f) The intermediate solutions proposed by DEFA using 11, 8, 7, 6, 5 and 4 ellipses. Captions show the estimated values of shape coverage α. (g) The skeleton of the
2D shape. (h) The association of pixels to k¼8 ellipses which is the final solution estimated by DEFA. (i) the AIC and BIC criteria for different values of k.

Fig. 5. The 32 shapes of the SISHA dataset.
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computationally cheap method achieves a high coverage of the
shape with a small number of initial ellipse hypotheses providing a
upper bound for the maximum number of fitting ellipses.
6.2. Evolving ellipse hypotheses based on GMM-EM

The GMM-EM algorithm is responsible for computing the
parameters of a fixed number k of ellipses E that achieve the best
coverage αðEÞ of the given 2D shape. Essentially, this boils down to
solving the MAX-α formulation of the modelling problem for k
ellipses. This is achieved by solving a hard Expectation-
Maximisation algorithm under the Equal Area constraint.

The clustering of foreground image points that is required for
the hard Expectation-Maximisation algorithm is performed based
on the 2D Gaussian function

PiðpÞ ¼ Ai � e�ðp� ciÞTMiðp� ciÞ; ð7Þ

that defines the probability of a pixel pAFG to belong to an ellipse
Ei. In Eq. (7), ci is the origin of Ei and Mi is a positive-definite 2�2
matrix representing the eccentricity and the orientation of Ei. We
set each Gaussian amplitude equal to one (Ai¼1), so that the
values of Pi(p) on the ellipse boundary are the same for all ellipses.
This means that the probability of a point to belong to an ellipse Ei
is independent of the size (area) of the ellipse and only depends on
its position, orientation and eccentricity.

Due to the fact that 8 i, Ai¼1, the natural logarithm of Pi(p) is
proportional to the ratio of distances Fðp; EiÞ between the ci and
the points p, p0, respectively, where p0 is the intersection of the line



input: Binary image I.
n n

1 ½S;R� ¼ ComputeShapeSkeletonðIÞ
2 C ¼ ComputeShapeComplexityðS;RÞ
3 CC ¼ InitializeEllipseHypothesesðS;RÞ

Fig. 6. The 17 images of SISHA-SCALE (first row) and SISHA-SHEAR (second row) datasets for the first shape of the SISHA dataset.

Fig. 7. Results on estimating shape complexity. Rows: MPEG-7, LEMS datasets. Columns: increasing estimated shape complexity (from 0% to 100%) in the corresponding
dataset, with a step of 20%. Captions show the value of the estimated shape complexity: (a) 1.6; (b) 10; (c) 15.8; (d) 22.4; (e) 33.1; (f) 272.7; (g) 2.5; (h) 18; (i) 24; (j) 29.1;
(k) 36; and (l) 91.5.
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pci and the Ei boundary:

Fðp; EiÞ ¼
Jp�ci J
Jp0 �ci J

: ð8Þ

It holds that the higher the Fðp; EiÞ, the lower the probability of p to
belong to Ei. If Fðp; EiÞ ¼ 1, then p lies on the boundary of Ei. Thus,
the foreground points (pAFG) are clustered to k groups Gi; iAf
1;…; kg according to the following rule:

Gi ¼ fpAFG : Fðp; EiÞrFðp; EjÞ 8 ja ig: ð9Þ
Then, according to the hard Expectation-Maximisation algorithm,
the Ei is directly updated by the second order moments of Gi under
the constraint that πaibi ¼ jGi j where ai and bi denote the semi-
major and semi-minor axes of Ei, respectively.

6.3. GMM-EM initialisation

One important issue to the performance of the overall method
is the proper initialisation of the GMM-EM algorithm. In case of
random initialisation, GMM-EM has more chances of converging
to a suboptimal local minimum of the problem. Fortunately, the
shape information encapsulated by the shape skeleton can be
exploited towards an informed decision on the GMM-EM initi-
alisation process.

More specifically, the goal is to guess a subset of k of the circles
in CC that yields the best possible solution with a single execution
of the GMM-EM. It is to be noted that the exhaustive consideration
of all possible subsets of circles requires j CC j

k

� �
executions of GMM-

EM which is computationally intractable even for very small
values of k.

To avoid this computational burden, we adopt the following
strategy for selecting the best k circles of CC that constitute the SCC
hypotheses set which initialises the GMM-EM. While in iteration k,
SCC already contains k�1 circles selected during iteration k�1.
Then, the goal is to select the “best” possible circle in CC so as to
form a set of k circles. The circle to be introduced should be the
one that maximises the expected coverage of the 2D shape. To
decide this, we take into account the distance of each 2D shape
point from the k�1 ellipses already identified at the k�1 step.
This is defined as FðpÞ ¼miniA f1;…;k�1gFðp; EiÞ. Intuitively, a good
circle to introduce is the one that covers the pixels that are further
away from the already identified ellipses. To achieve this, from the
set of circles CC-SCC, we select the one under which the sum of F
(p) is minimised.

Algorithm 2. Decremental Ellipse Fitting (DEFA).
output: Set of ellipses E with the lowest AIC
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Fig. 8. Histograms of shape complexity C for the four employed datasets: MPEG-7 (top-left), LEMS (top-right), SISHA-SCALE (bottom-left) and SISHA-SHEAR (bottom-right).
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Fig. 9. The average C for each of the transformations across all shapes on SISHA-SCALE (left) and SISHA-SHEAR (right).

Table 1
The average AIC of AEFA, DEFA and EMAR, the PrðAEFA=AICÞ, PrðDEFA=AICÞ and the PrðEMAR=AICÞ computed on all images of the four used datasets.

Dataset AIC(AEFA) AIC(DEFA) AIC(EMAR) Pr(AEFA/AIC) (%) Pr(DEFA/AIC) (%) Pr(EMAR/AIC) (%)

MPEG-7 �44.74 �45.13 �39.95 29.57 43.79 9.71
LEMS �63.50 �63.93 �54.72 34.88 53.21 1.37
SISHA-SCALE �43.60 �44.60 �35.57 31.07 41.54 7.72
SISHA-SHEAR �53.42 �54.33 �46.06 36.95 43.93 10.48
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E¼GMM-EMðI;CC; kÞ
AICn ¼ ComputeAICðI; E;CÞ
repeat
for e1; e2AE do
ΔAICðe1; e2Þ ¼1
if e1 and e2 are adjacent then
ΔAICðe1; e2Þ ¼mergeGainðI;C; E; e1; e2Þ

end
end
½en1; en2� ¼ argmine1 ;e2 AEðΔAICðe1; e2ÞÞ
repeat

E¼mergeðE; en1; en2Þ
ΔAICðe1; eÞ ¼1; 8eAE
ΔAICðe2; eÞ ¼1; 8eAE
½en1; en2� ¼ argmine1 ;e2 AEðΔAICðe1; e2ÞÞ
k¼ k�1

until ΔAICðen1; en2Þ40
E¼ GMM�EMðI; E; kÞ
AIC ¼ ComputeAICðI; E;CÞ
if AICoAICn then

AICn ¼ AIC
En ¼ E

end
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The importance of this process is illustrated in the example of
Fig. 3. The colourmap of Fig. 3(a)–(e), (g) and (h) corresponds to F
(p), that is, the distance of foreground pixels from the ellipses
introduced so far (cold and warm colours denote small and large
distances, respectively). In the evolution of the proposed method
(Fig. 3(a)–(e) and (g)) it is shown that the next circle selected in
ted in an uncovered region so as to maximise the
verage. In Fig. 3(g) and (i) the final solution and the
f pixels proposed by AEFA are illustrated, respectively.
n achieves α¼94.4%. Fig. 3(h) presents the corre-
sult using the six largest circles of CC. This result is
ptimal yielding α¼89.4%. Fig. 3(j) shows the AIC and
for different k. A clear minimum at k¼6 is identified. It
verified that the minimisation of AIC or BIC yields the
on.
ental Ellipse Fitting Algorithm

emental Ellipse Fitting Algorithm (DEFA) decreases the
considered ellipses starting from all ðjCC j Þ of them.
AEFA, the input to DEFA is the binary image I repre-
shape to be modelled by ellipses. Its goal is to compute
ses En with the lowest AIC ðAICnÞ, as this is defined in
main steps of the DEFA are summarised in Algorithm 2.
st three lines of DEFA, that are the same as AEFA, the
n of a set of candidate circles CC is performed. These
e initial ellipse hypotheses representing the 2D shape.
lity jCC j of CC provides an upper bound on the num-
es that can be used to initiate DEFA (lines 4–6).
e main loop of DEFA is executed (lines 7–28). In each

iteration, a pair of adjacent ellipses is selected in order to be
merged and to possibly decrease the AIC. Since there is no lower
bound of AIC as the number of ellipses decreases, this process
continues until the set of considered ellipses is reduced to just one.

First (lines 8–13), the difference of the AIC that corresponds to
the merging of adjacent ellipses e1; e2AE and the current AIC is
stored in ΔAIC matrix. It holds that the lower ΔAICðe1; e2Þ, the
more suitable the pair for merging. Therefore, the multiple mer-
ging process starts from the pair of adjacent ellipses e1; e2AE with



Table 2
The average coverage α of AEFA, DEFA and EMAR, the PrðAEFA=αÞ, PrðDEFA=αÞ and the PrðEMAR=αÞ computed on all images of the four used datasets.

Dataset α(AEFA) (%) α(DEFA) (%) α(EMAR) (%) Pr(AEFA/α) (%) Pr(DEFA/α) (%) Pr(EMAR/α) (%)

MPEG-7 89.89 90.10 86.58 31.86 36.43 7.43
LEMS 92.97 93.05 88.91 34.40 40.08 0.82
SISHA-SCALE 93.57 93.71 90.64 21.88 33.09 8.82
SISHA-SHEAR 92.89 93.00 90.31 31.80 39.71 9.56
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Fig. 10. (a) PrðAEFA=AICÞ, PrðDEFA=AICÞ and PrðEMAR=AICÞ for different ranges of complexity computed over all 3950 images. (b) The average values of coverage α as a function
of the number k of ellipses over all 3950 images.
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Fig. 11. δki on the SISHA-SCALE (top) and SISHA-SHEAR (bottom) datasets.
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the minimum ΔAIC and stops when ΔAIC is positive (line 21).
Ellipse merging (line 16) merges e1; e2 to one ellipse by running
the GMM-EM on the union of e1; e2, without affecting the rest of
the ellipses in E. In line 22, the resulting (reduced) ellipse set E
initialises the hard Expectation-Maximisation algorithm (Section
6.2) that updates the ellipse parameters. This process converges
quite faster than the corresponding step in AEFA. This is because
for a given k, AEFA starts from circles and evolve them to ellipses,
while DEFA starts from the ellipses as they have already evolved to
fit the 2D shape, so less GMM-EM iterations are required until
convergence.

The adopted scheme may result in multiple ellipse merges at a
time. This multiple ellipse merging strategy does not affect sig-
nificantly the quality of the obtained results if each ellipse eAE
participates in at most once pairs to be merged. This is imple-
mented by lines (lines 17 and 18). According to our experiments in
3950 images (see Section 9), the use of multiple merges decreases
the total computational cost about 30%, while the average AIC was
only 0.086% lower than the corresponding AIC without the mul-
tiple merging step. In addition, due to the fast convergence of
DEFA, DEFA is about tree times faster on average than AEFA.

Fig. 4 illustrates an example run of DEFA. The colourmap of
Fig. 4(a)–(f) corresponds to F(p) (see Section 6.2), that is, the dis-
tance of foreground pixels from the ellipses introduced so far (cold
and warm colours denote small and large distances, respectively).
As shown in Fig. 4(a)–(f), the ellipses that are located in the most
over-segmented regions are selected so as to maximise the
expected coverage. Fig. 4(b) and (h) shows the final solution and
the clustering of pixels (α¼96.9%), respectively. Fig. 4(i) shows the
AIC and BIC criteria for different values of k. A clear minimum at
k¼8 and a local minimum at k¼6 are identified, while the values
of k¼9 and k¼10 are not computed due to the multiple merging
step that merges three pairs of ellipses in the first iteration of the
main loop. As it can be verified, the minimisation of AIC or BIC
yields the same solution.
8. Computational complexity

The computational complexity of AEFA and DEFA depends on
the number of foreground pixels ðn¼ jFGj Þ, the number of can-
didate circles ðc¼ jCC j Þ and the number of iterations that the main
loop of AEFA is executed kmax with kmaxrc. It holds that c and kmax

are independent of image size (n) and only depend on the shape
complexity.

The computation of shape complexity and of the shape skele-
ton is O(n). The computational complexity of the process of
forming ellipse hypotheses is also O(n). Then, the main loop of
AEFA is executed kmax times. In each k-iteration of this loop, GMM-
EM and hypothesis selection are executed. Similarly with k-means,
the complexity of GMM-EM is O(kn). The complexity of SelectHy-
potheses is also O(kn). Conclusively, the most computationally
intensive part of the proposed method is the main loop of AEFA
with Oðk � nÞ complexity. The total computational cost of AEFA is
OðkmaxcnÞ ¼Oðc2nÞ.

In DEFA, the main loop is executed c times. In each k-iteration
of this loop, GMM-EM is executed with Oððc�kÞnÞ computational
cost. The computational complexity of the selection of multiple
merging set (lines 8–21) is ðOðc2ÞÞ. Therefore, the computational
complexity of DEFA is Oðc2nþc3Þ ¼Oðc2nÞ.



Fig. 12. Results of AEFA (first column), DEFA (second column) and EMAR (third column) on selected shapes from MPEG7 dataset. Rows correspond to the 10%, 50%, and 90%
percentile of the value α of AEFA. Captions show the estimated values of shape coverage α: (a) 84.4%; (b) 83.9%; (c) 77.1%; (d) 91.5%; (e) 91.5%; (f) 88.9%; (g) 94.7%; (h) 94.1%;
and (i) 93.1%.

4 https://sites.google.com/site/costaspanagiotakis/research/EFA
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9. Experimental evaluation

The evaluation of the proposed approaches was based on two
standard databases as well as on the SISHA (SImple SHApe)
dataset that was developed for the purposes of this research. More
specifically, we employ:

� MPEG-7 [34], which consists of 1400 binary shapes organised in
70 categories with 20 shapes per category. This dataset has been
extensively used on shape retrieval tasks [35].

� A subset of LEMS [36], i.e., 1462 shapes that come from the
following categories of the original database: Buildings, Con-
tainers, Fish, Fruit and vegetables, Misc Animal, People, Robots,
Toddlers and Turtles.

SISHA contains the 32 shapes shown in Fig. 5 and has been
employed to measure the performance of the proposed methods
under scaling and shearing transformations. For each 2D shape of
SISHA, 16 scale and 16 shear transformations are applied resulting
in the SISHA-SCALE and the SISHA-SHEAR datasets. In those, we
include the original images, so each of them consists of 544
(32�16þ32) binary shapes.
The 16 scale transformations change both image dimensions by
a factor of sci ¼ 1:1i�9; iAf1;…;17g�f9g. Thus, it holds that the
first 8 transforms correspond to a shrinking of the original image,
while the last 8 correspond to an enlargement. The ratio of the
number of pixels between the smallest image ðsc1 ¼ 0:466Þ and the
largest image (sc17 ¼ 2:14) is high enough ðsc17=sc1Þ2 ¼ 21:11 to
represent a very broad range of scales. For the 16 shear transfor-
mations, we employed only vertical shear, since the effects of
horizontal shear are the same when applied on a rotated image.

The vertical shear transform is given by 1
shi

0
1

� �
, where shi ¼ 0:2 �

ði�9Þ; iAf1;…;17g�f9g controls the shearing effect. Fig. 6 illus-
trates SISHA-SCALE and SISHA-SHEAR for the first image of the
SISHA dataset.

The employed datasets together with the results obtained with
the proposed methods are available online.4

Estimation of shape complexity: We computed the shape com-
plexity C for all shapes in the MPEG-7 and LEMS datasets. In Fig. 7,
each row corresponds to each of these datasets. Columns corre-
spond to 0%, 20%, 40%, 60%, 80% and 100% percentile of shape

https://sites.google.com/site/costaspanagiotakis/research/EFA


Fig. 13. Results of AEFA (first column), DEFA (second column) and EMAR (third column) on selected shapes from LEMS dataset. Rows correspond to the 10%, 50%, and 90%
percentile of the value α of AEFA. Captions show the estimated values of shape coverage α: (a) 90.7%; (b) 91.3%; (c) 85.8%; (d) 93%; (e) 91.8%; (f) 86%; (g) 95.2%; (h) 95.2%; and
(i) 91.4%.
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complexity. That is, shapes in each row should vary from the
simplest to the most complex in the corresponding dataset,
according to the adopted shape complexity measure. It can be
verified that this is actually the case.

We also computed the histograms of 2D shape complexity C for
the four datasets (see Fig. 8). The most complex shapes come from
MPEG-7 datasets. However, the average shape complexity of LEMS
is higher than that of MPEG-7. In addition, SISHA-SHEAR appears
more complex than SISHA-SCALE. This is attributed to the fact that
the shearing transformation turns rectangles into slanted
parallelograms.

This is also quantified by the results of the following experi-
ment. For the SISHA-SCALE and SISHA-SHEAR, we computed the
variance of shape complexity for each of the shapes across all
transformations. Fig. 9 illustrates the average shape complexity for
each of the transformations across all shapes on SISHA-SCALE
(left) and SISHA-SHEAR (right). For SISHA-SCALE, the mean var-
iance for all shapes is 3.7, while for SISHA-SHEAR this is 15.5. Thus,
shape complexity does not vary significantly with scale. Moreover,
it can be well approximated by a straight line. Since the x-axis of
this figure corresponds to the logarithm of image scale, this
experiment verifies the theoretical result of Section 4 that the
shape complexity increases logarithmically with scale. With
respect to shear, complexity increases as we move further from
the original shape (middle) and shear transformations become
stronger.

Comparison with EMAR: We compared the proposed AEFA and
DEFA methods with the method presented in [21] that employs
the EM algorithm [21] under random initialisation of GMMs
(EMAR). We compare with it because, to the best of our knowl-
edge, this is the closest method we can compare with. As originally
proposed, EMAR operates for a fixed number of ellipses k. To
perform a fair and interesting comparison, similarly to AEFA, we
let EMAR successively increase the number of considered ellipses,
yielding the solution that maximises the AIC criterion as defined in
Section 4. The size of the ellipses is determined by the Equal Area
constraint.

We compared the performance of AEFA, DEFA and EMAR on the
basis of α and on the AIC that try to minimise. For a given dataset,
we also compute Prðm=AICÞ, where m is a method in
fAEFA;DEFA; EMARg. Prðm=AICÞ is used to measure performance the
method m that is defined as the balance between model com-
plexity and shape coverage. Prðm=AICÞ is quantified as the per-
centage of images of the datasets where the method m clearly



Fig. 14. Results of AEFA (first column), DEFA (second column) and EMAR (third column) on selected shapes from SISHA-SCALE dataset. Rows correspond to the 10%, 50%, and
90% percentile of the value α of AEFA. Captions show the estimated values of shape coverage α: (a) 90.2%; (b) 90.0%; (c) 91.2%; (d) 93.8%; (e) 94.0%; (f) 89.8%; (g) 97.4%;
(h) 97.8%; and (i) 89.6%.
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outperforms the two others under the AIC.This also means that the
value 100%�P

mPrðm=AICÞ gives the percentage of images for
which there is no clear winner method.

Table 1 shows the average AIC of AEFA, DEFA and EMAR, the
PrðAEFA=AICÞ, PrðDEFA=AICÞ and the PrðEMAR=AICÞ computed in the
four employed datasets. The corresponding statistics for the shape
coverage α are presented in Table 2. The results with respect to
coverage α and AIC are similar. AEFA and DEFA clearly outperform
EMAR under any dataset and metric. DEFA slightly outperforms
AEFA under any dataset and metric. When AIC is taken into
account, DEFA outperforms AEFA and EMAR in 47% of the 3950
shapes. When α is taken into account, DEFA outperforms AEFA and
EMAR in 37% of the 3950 shapes.

Fig. 10(a) illustrates the PrðAEFA=AICÞ, PrðDEFA=AICÞ and the Pr
ðEMAR=AICÞ for different intervals of complexity computed over
the 3950 images of all datasets. The plots show that the higher the
complexity of a given shape, the more AEFA outperforms EMAR
and the more DEFA outperforms AEFA and EMAR. This is due to
the fact that as the shape complexity C increases, more ellipses are
required to represent the shape, therefore, the proposed frame-
work and especially DEFA, that starts from high number of ellipses,
perform much better compared to the random initialisation
of EMAR.

Fig. 10 (b) depicts the average values of α as a function of
number of ellipses (k) over all 3950 images. It holds that when
k¼1 all the methods perform similarly. The higher the number of
ellipses k, the larger the difference between the performances of
the proposed methods and EMAR, since the initial ellipses of AEFA
and the merging pairs of DEFA are selected so that the expected
coverage is maximised.

Robustness to transformations: The robustness and stability of
the AEFA, DEFA and EMAR on scaling and shearing transformations
are measured on SISHA-SCALE and SISHA-SHEAR datasets. Let ki;j
denote the number of ellipses, that an algorithm yields for the
shape jAf1;…;32g of SISHA-SCALE dataset under the factor sci.
The following relative change (δki;j) between the ki;j and the ki;9
measures the effect of the scaling sci on the model selection.

δki;j ¼
jki;j�ki;9 j

ki;9
: ð10Þ

The same metric is applied to SISHA-SHEAR, where the effect of shi
is measured. Fig. 11 illustrates the average value of the relative



Fig. 15. Results of AEFA (first column), DEFA (second column) and EMAR (third column) on selected shapes from SISHA-SHEAR dataset. Rows correspond to the 10%, 50%, and
90% percentile of the value α of AEFA. Captions show the estimated values of α: (a) 89.5%; (b) 89.3%; (c) 87.2%; (d) 92.9%; (e) 96.8%; (f) 90.3%; (g) 96.5%; (h) 96.4%; and
(i) 91.3%.
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changes δki over the 32 images of SISHA-SCALE and SISHA-SHEAR
datasets.

Under any case of scale and in most cases of shear transfor-
mations, AEFA and DEFA perform better than EMAR. The average
effect of scaling and shearing on AEFA is 7% and 13% on model
selection, respectively. The corresponding average effect of scaling
and shearing on DEFA is 5% and 11.5% on model selection,
respectively. The corresponding average effect on EMAR is 17%
and 20%.

Shape coverage: The goal of another experiment was to examine
in more detail the behaviour of AEFA with respect to the coverage
parameter α and to compare all the methods under the same
instances. In each of the four datasets, we sorted the 2D shapes in
increasing order of the coverage α that was achieved by AEFA. We
then identified the shape at the x% percentile of the sorted list
with xAf10%;50%;90%g. This results in three images of increasing
α per dataset. In Figs. 12–15 we show these three samples (rows)
for the AEFA (first column) and the corresponding results for DEFA
(second column) and EMAR (third column) under the four data-
sets. One expects complicated shapes consisting of parts that are
not accurately modelled by ellipses to have lower α and to appear
in the top rows. Less complicated shapes with mostly elliptical
parts should have higher α and appear in the bottom rows. This is
indeed the case. Still, coverage is quite high for all shapes. The
results proposed by AEFA and DEFA are quite similar and usually
clearly outperform EMAR. From a qualitative point of view, the
solutions proposed by AEFA and DEFA agree with human intuition.

Robustness to noise: This experiment studies the behaviour of
the proposed method with respect to noise. Various noise models
have been proposed in the literature [37]. In this work, two
datasets (SISHA-NOISE1 and SISHA-NOISE2) have been employed
to measure the performance of the proposed methods under two
different types of noise.

Each dataset contains the 32 original images of the SISHA
dataset and five additional versions of each image, contaminated
with a different noise level. So, each of the SISHA-NOISE1 and
SISHA-NOISE2 datasets consists of 192 ð32þ5 � 32Þ images.

The employed noise process operates as follows. In an image,
we randomly pick a foreground pixel. We define a circular
neighbourhood of radius r around this point and, within this
neighbourhood, we flip the label (foreground/background) of each
pixel with some probability (p¼0,80). This process is repeated for
several randomly selected points and it terminates when the
percentage of label changes is equal to the given noise level (e.g.
2%, 4%,…, 10%). The radius of each circular neighbourhood is uni-
formly selected in the interval ð0;RmaxÞ, where Rmax is the 5% and
20% of the square root of the object area on SISHA-NOISE1 and



Fig. 16. The first shape of the SISHA dataset contaminated with different noise levels in the SISHA-NOISE1 (first row) and SISHA-NOISE2 (second row) datasets. Captions
show the noise level: (a) 0%; (b) 2%; (c) 4%; (d) 6%; (e) 8%; (f) 10%; (g) 0%; (h) 2%; (i) 4%; (j) 6%; (k) 8%; and (l) 10%.

Fig. 17. PrðAEFA=AICÞ, PrðDEFA=AICÞ and PrðEMAR=AICÞ under different noise levels of (a) SISHA-NOISE1 and (b) SISHA-NOISE2.

Fig. 18. Representative results from employing AEFA ((a) and (b)) and DEFA ((c) and (d)) in images of the SISHA-NOISE1 ((a) and (c)) and SISHA-NOISE2 ((b) and (d)) datasets.
Captions show the estimated values of shape coverage α.
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SISHA-NOISE2, respectively. Thus, on SISHA-NOISE1 we get a large
number of “small spots” (e.g. similar to salt and pepper noise),
while on SISHA-NOISE2 we get a small number of “large spots”,
that affect more significantly the shape characteristics. Fig. 16
depicts the six images of SISHA-NOISE1 (first row) and SISHA-
NOISE2 (second row) datasets for the first shape of the SISHA
dataset.

We compared the performance of AEFA, DEFA and EMAR by
measuring the PrðAEFA=AICÞ, PrðDEFA=AICÞ and PrðEMAR=AICÞ in
the SISHA-NOISE1 and SISHA-NOISE2 datasets (see Fig. 17). The
plots show that the proposed methods clearly outperform the
EMAR method under any dataset and noise level. Additionally, in
most cases DEFA outperforms AEFA. This is more pronounced in
SISHA-NOISE2 where the employed noise model increases the
complexity of the shapes. More specifically, DEFA clearly outper-
forms the rest methods in 48% and 58% of the images of SISHA-
NOISE1 and SISHA-NOISE2, respectively. AEFA outperforms the
rest methods in 36% and 27% of the images of SISHA-NOISE1 and
SISHA-NOISE2, respectively. Fig. 18 shows some representative
results of AEFA (left) and DEFA (right) method from SISHA-NOISE1
and SISHA-NOISE2 datasets.

Qualitative results: Shape examples that show the capabilities
but also some limitations of AEFA and DEFA are shown in Figs. 19
and 20. When the shape parts are close to ellipses, then the



Fig. 19. Representative success (top) and failure (bottom) examples of AEFA method. Captions show the estimated values of shape coverage α: (a) 93.6%; (b) 93.2%; (c) 92.1%;
(d) 89.2%; (e) 92.7%; (f) 91.4%; (g) 92.0%; (h) 90.9%; (i) 91.4%; (j) 92.3%; (k) 94%; and (l) 80.5%.

Fig. 20. Representative success (top) and failure (bottom) examples of DEFA method. Captions show the estimated values of shape coverage α: (a) 92.9%; (b) 90.0%; (c) 92.1%;
(d) 89.4%; (e) 92.1%; (f) 92.7%; (g) 91.6%; (h) 90.2%; (i) 90.2%; (j) 88.9%; (k) 88.6%; and (l) 80.6%.

Fig. 21. Left: The histogram of the difference between the model size when AIC and BIC are preferred. Right: The probability of agreement of AIC and BIC as a function of k
that AIC proposes computed over all images of all datasets.
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solutions of AEFA and DEFA are near optimal even if the shape
structure is complex (see Figs. 19 and 20, top rows). However, due
to the minimisation of AIC, the large and small shape parts that are
not well fitted by ellipses, may be over-segmented and merged,
respectively (Figs. 19 and 20, bottom row). The existence of shape
holes increases the number of ellipses that should be used to
model the shape (see Fig. 19(f) and (l) and Fig. 20(f) and (l)). Fig. 19
(a), (d), (f), (h), and (l) and Fig. 20(f), (a), (d), (b) and (f) depict
results of AEFA and DEFA on the same shapes. DEFA slightly
outperforms AEFA according to the AIC criterion and provides
result that are more compatible to human intuition.

AIC vs BIC: A final experiment compares model selection based
on AIC versus BIC. For each image of the 3950 images of the
datasets, the difference between the number of ellipses that AIC or
BIC propose has been computed. This is almost always positive,
since BIC penalises model size more heavily than AIC. This also
means that the coverage achieved with AIC is higher than the one
achieved with BIC. Fig. 21 (left) shows the histogram of this
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difference. In 70% of instances, BIC and AIC agree on model
selection. The difference is at most 2 in 88% of the cases, which
means that usually AIC and BIC agree on model selection. Fig. 21
(right) illustrates the probability of agreement of AIC and BIC as a
function of the number of ellipses that AIC proposes. When this is
high, AIC and BIC agree on model selection. For more complex
cases, agreement is less probable.
10. Conclusions

We proposed a parameter-free methodology for estimating
automatically the number and the parameters of ellipses that
approximate effectively a given 2D shape under the Equal Area
constraint. Our approach capitalises on a novel definition of shape
complexity that exploits the skeleton of a shape. In combination
with the AIC, shape complexity defines an information-theoretic
criterion for model selection that balances model complexity and
the shape coverage error. For a given model, ellipse fitting is per-
formed with a hard EM algorithm that is carefully initialised to
improve shape coverage based on an augmentative (AEFA) or a
decremental (DEFA) approach. Experiments on more than 4000 2D
shapes assess the effectiveness of AEFA and DEFA on a variety of
shapes, shape transformations, noise models and noise con-
tamination levels. The obtained results demonstrate that DEFA
outperforms AEFA especially for middle and high complexity
shapes. While there is no guarantee for global optimality, AEFA
and DEFA clearly outperform the competitive EMAR method in all
datasets and metrics. From a qualitative point of view, the solu-
tions proposed by AEFA and DEFA seem to agree with human
intuition. Ongoing work targets the exploitation of the compact
representation resulting from the proposed approach on the pro-
blem of recovering automatically the unknown kinematic struc-
ture of an unmodelled articulated object based on several, tem-
porally ordered views of it. Additionally, we consider extensions of
DEFA/AEFA towards handling shape primitives other than ellipses.
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